Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{68888}{2422198}\) < \(\frac{68888}{275552}\)=\(\frac{1}{4}\)=\(\frac{46872}{187488}\)<\(\frac{46872}{165564}\)nên\(\frac{68888}{2422198}\)<\(\frac{46872}{165564}\)
\(\frac{46872}{165564}=\frac{62}{219}\)
\(\frac{688882}{2422198}=\frac{62}{218}\)
Do\(\frac{62}{219}\)bé-hơn\(\frac{62}{218}\)nên\(\frac{46872}{165564}\)bé-hơn\(\frac{688882}{2422198}\)
Tối giản: \(\frac{68888}{2422198}\)thành\(\frac{31}{109}\)và \(\frac{46872}{165564}\)thành \(\frac{62}{219}\)
Ta có:
\(\frac{31}{109}=\frac{31.219}{109.219}=\frac{6789}{23871}\)
\(\frac{62}{219}=\frac{62.109}{219.109}=\frac{6758}{23871}\)
Vì 6789 > 6758 nên \(\frac{46872}{165564}>\frac{688882}{2422198}\)
~ Hok tốt ~
a: 43/52>26/52=1/2=60/120
b: 17/68=1/4<1/3=35/105<35/103
c: \(\dfrac{2018\cdot2019-1}{2018\cdot2019}=1-\dfrac{1}{2018\cdot2019}\)
\(\dfrac{2019\cdot2020-1}{2019\cdot2020}=1-\dfrac{1}{2019\cdot2020}\)
2018*2019<2019*2020
=>-1/2018*2019<-1/2019*2020
=>\(\dfrac{2018\cdot2019-1}{2018\cdot2019}< \dfrac{2019\cdot2020-1}{2019\cdot2020}\)
\(\dfrac{19}{19}\) = 1 < \(\dfrac{2005}{2004}\) vậy \(\dfrac{19}{19}\) < \(\dfrac{2005}{2004}\)
\(\dfrac{72}{73}\) = 1 - \(\dfrac{1}{73}\)
\(\dfrac{98}{99}\) = 1 - \(\dfrac{1}{99}\)
Vì \(\dfrac{1}{73}\) > \(\dfrac{1}{99}\) nên \(\dfrac{72}{73}\) < \(\dfrac{98}{99}\)
a) ta có: \(1-\frac{2012}{2013}=\frac{1}{2013}\)
\(1-\frac{2013}{2014}=\frac{1}{2014}\)
mà \(\frac{1}{2013}>\frac{1}{2014}\) nên \(\frac{2013}{2014}>\frac{2012}{2013}\)
2225 = (23)75 = 875
3151 > 3150 = (32)75 = 975
=> 3151 > 975 > 875
=> 3151 > 2225
4n - 5 chia hết cho 2n - 1
=> 4n - 2 - 3 chia hết cho 2n - 1
=> 2.(2n - 1) - 3 chia hết cho 2n - 1
Do 2.(2n - 1) chia hết cho 2n - 1 => 3 chia hết cho 2n - 1
Mà n thuộc N => 2n - 1 > hoặc = -1
=> 2n - 1 thuộc {-1 ; 1 ; 3}
=> 2n thuộc {0 ; 2 ; 4}
=> n thuộc {0 ; 1 ; 2}
Ta thấy : \(2222^{3333}vs2^{300}:\hept{\begin{cases}2222>2\\3333>300\end{cases}\Rightarrow2222^{3333}>2^{300}}\)
Ta thấy : \(2222^{1111}=1111^{1111}.2^{1111}< 1111^{1111}.1111^{1110}=1111^{2221}\)
Ta thấy : \(54^{10}=\left(3^3\right)^{10}.2^{10}=3^{30}.2^{10}=3^{12}.3^{18}.2^{10}>3^{12}.7^{12}=21^{12}.\)
830.... 3220
830=83x10
=(83)10
=51210
3220=322x10
=(322)10
=102410
Vì 102410 >51210
=>3220 >830
554.... 381
554=56x9
=(56)9
=156259
381=39x9
=(39)9
=196839
Vì 196839 > 156259
=>381 > 554
1340.... 2161
1340=1340
2161=2160+1
=24x40+1
=(24)40+1
=1640+1
=1641
Vì 1641 >1340
=>2161 >1340
Ta có: 8^30=(2^3)^30=2^90 (1).
Và: 32^20=(2^5)^20=2^100 (2).
Từ (1) và (2) suy ra 2^90 < 2^100
Vậy 8^30 < 32^20.
Như vậy là bài toán đã xong rồi. Xin các bạn cho mình được không ạ.
Vì :
+) 68888/2422198 < 68888/275552 = 1/4
+) 46872/187488 = 1/4 < 46872/165564
=> 68888/2422198 < 46872/165564