Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 19 60 < 20 60 = 30 90 < 31 90
b) 15 23 > 14 23 = 70 115 > 70 117
\(A=3\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+.....+\frac{3}{55\cdot58}\right)\)
\(A=3\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{55}-\frac{1}{58}\right)\)
\(A=3\left(1-\frac{1}{58}\right)\)
\(A=3-\frac{1}{174}< 3< \frac{10}{3}\)
Gọi tổng là A
⇒ A = \(\dfrac{1}{28}+\dfrac{1}{70}+\dfrac{1}{130}+\dfrac{1}{208}+...+\dfrac{1}{3190}\)
⇒ 3A = \(3\left(\dfrac{1}{28}+\dfrac{1}{70}+\dfrac{1}{130}+\dfrac{1}{208}+...+\dfrac{1}{3190}\right)\)
⇒ 3A = \(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+\dfrac{3}{13.16}+...+\dfrac{3}{55.58}\)
⇒ 3A = \(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}+...+\dfrac{1}{55}-\dfrac{1}{58}\)
⇒ 3A = \(\dfrac{1}{4}-\dfrac{1}{58}\) = \(\dfrac{29}{116}-\dfrac{2}{116}\) = \(\dfrac{27}{116}\)
⇒ A = \(\dfrac{27}{116}\): 3 = \(\dfrac{27}{116}\).\(\dfrac{1}{3}\) = \(\dfrac{9}{116}\)
a: 43/52>26/52=1/2=60/120
b: 17/68=1/4<1/3=35/105<35/103
c: \(\dfrac{2018\cdot2019-1}{2018\cdot2019}=1-\dfrac{1}{2018\cdot2019}\)
\(\dfrac{2019\cdot2020-1}{2019\cdot2020}=1-\dfrac{1}{2019\cdot2020}\)
2018*2019<2019*2020
=>-1/2018*2019<-1/2019*2020
=>\(\dfrac{2018\cdot2019-1}{2018\cdot2019}< \dfrac{2019\cdot2020-1}{2019\cdot2020}\)
\(\dfrac{19}{19}\) = 1 < \(\dfrac{2005}{2004}\) vậy \(\dfrac{19}{19}\) < \(\dfrac{2005}{2004}\)
\(\dfrac{72}{73}\) = 1 - \(\dfrac{1}{73}\)
\(\dfrac{98}{99}\) = 1 - \(\dfrac{1}{99}\)
Vì \(\dfrac{1}{73}\) > \(\dfrac{1}{99}\) nên \(\dfrac{72}{73}\) < \(\dfrac{98}{99}\)
a) ta có: \(1-\frac{2012}{2013}=\frac{1}{2013}\)
\(1-\frac{2013}{2014}=\frac{1}{2014}\)
mà \(\frac{1}{2013}>\frac{1}{2014}\) nên \(\frac{2013}{2014}>\frac{2012}{2013}\)
2225 = (23)75 = 875
3151 > 3150 = (32)75 = 975
=> 3151 > 975 > 875
=> 3151 > 2225
4n - 5 chia hết cho 2n - 1
=> 4n - 2 - 3 chia hết cho 2n - 1
=> 2.(2n - 1) - 3 chia hết cho 2n - 1
Do 2.(2n - 1) chia hết cho 2n - 1 => 3 chia hết cho 2n - 1
Mà n thuộc N => 2n - 1 > hoặc = -1
=> 2n - 1 thuộc {-1 ; 1 ; 3}
=> 2n thuộc {0 ; 2 ; 4}
=> n thuộc {0 ; 1 ; 2}
Ta thấy : \(2222^{3333}vs2^{300}:\hept{\begin{cases}2222>2\\3333>300\end{cases}\Rightarrow2222^{3333}>2^{300}}\)
Ta thấy : \(2222^{1111}=1111^{1111}.2^{1111}< 1111^{1111}.1111^{1110}=1111^{2221}\)
Ta thấy : \(54^{10}=\left(3^3\right)^{10}.2^{10}=3^{30}.2^{10}=3^{12}.3^{18}.2^{10}>3^{12}.7^{12}=21^{12}.\)
830.... 3220
830=83x10
=(83)10
=51210
3220=322x10
=(322)10
=102410
Vì 102410 >51210
=>3220 >830
554.... 381
554=56x9
=(56)9
=156259
381=39x9
=(39)9
=196839
Vì 196839 > 156259
=>381 > 554
1340.... 2161
1340=1340
2161=2160+1
=24x40+1
=(24)40+1
=1640+1
=1641
Vì 1641 >1340
=>2161 >1340
Ta có: 8^30=(2^3)^30=2^90 (1).
Và: 32^20=(2^5)^20=2^100 (2).
Từ (1) và (2) suy ra 2^90 < 2^100
Vậy 8^30 < 32^20.
Như vậy là bài toán đã xong rồi. Xin các bạn cho mình được không ạ.
so sánh qua số trunhg gian