Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{n+1}{n+5}-\dfrac{n+2}{n+3}\)
\(=\dfrac{n^2+4n+3-n^2-7n-10}{\left(n+5\right)\left(n+3\right)}\)
\(=\dfrac{-3n-7}{\left(n+5\right)\left(n+3\right)}\)
Ta có: \(\frac{n+1}{n+4}=\frac{n+4-3}{n+4}=\frac{n+4}{n+4}-\frac{3}{n+4}=1-\frac{3}{n+4}\)
\(\frac{n}{n+3}=\frac{n+3-3}{n+3}=\frac{n+3}{n+3}-\frac{3}{n+3}=1-\frac{3}{n+3}\)
Vì \(\frac{3}{n+4}< \frac{3}{n+3}\Rightarrow1-\frac{3}{n+4}>1-\frac{3}{n+3}\Rightarrow\frac{n+1}{n+4}>\frac{n}{n+3}\)
Vậy \(\frac{n+1}{n+4}>\frac{n}{n+3}\)
\(\frac{n+1}{n+2}\)và \(\frac{n}{n+3}\)
\(\orbr{\begin{cases}\frac{n+1}{n+2}=\frac{\left(n+1\right)\left(n+3\right)}{\left(n+2\right)\left(n+3\right)}=\frac{n^2+3n+n+3}{\left(n+2\right)\left(n+3\right)}=\frac{n^2+4n+3}{\left(n+2\right)\left(n+3\right)}\\\frac{n}{n+3}=\frac{n\left(n+2\right)}{\left(n+2\right)\left(n+3\right)}=\frac{n^2+2n}{\left(n+2\right)\left(n+3\right)}\end{cases}}\)\(\Rightarrow\frac{n^2+4n+3}{\left(n+2\right)\left(n+3\right)}>\frac{n^2+2n}{\left(n+2\right)\left(n+3\right)}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)
Ta nhân chéo (n+1) x (n+3)=n^2+n+3n+3 (1)
n x (n+2)=n^2+2n (2)
Ta thấy (1)>(2) do n^2+n+3n+3 > n^2+2n nên (n+1) x (n+3) > n x (n+2)
Từ đó suy ra n+1/n+2 > n/n+3 ( tính chất )
có:\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\)
\(\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)