Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
\(27^{27}>27^{26}=\left(27^2\right)^{13}=729^{13}>243^{13}\)
\(\Rightarrow27^{27}>243^{13}\)
\(\Rightarrow-27^{27}< -243^{13}\)
\(\Rightarrow\left(-27\right)^{27}< \left(-243\right)^{13}\)
b) \(\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{8}\right)^{26}=\left(\dfrac{1}{8^2}\right)^{13}=\left(\dfrac{1}{64}\right)^{13}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(-\dfrac{1}{8}\right)^{25}< \left(-\dfrac{1}{128}\right)^{13}\)
c) \(4^{50}=\left(4^5\right)^{10}=1024^{10}\)
\(8^{30}=\left(8^3\right)^{10}=512^{10}< 1024^{10}\)
\(\Rightarrow4^{50}>8^{30}\)
d) \(\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{9}\right)^{12}< \left(\dfrac{1}{27}\right)^{12}\)
\(\Rightarrow\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{27}\right)^{12}\)
Giải
\(\left(-27\right)^{27}=\left(-3^3\right)^{27}=\left(-3\right)^{81}\)
\(\left(-243\right)^{13}=\left(-3^5\right)^{13}=\left(-3\right)^{63}\)
=>\(\left(-27\right)^{27}>\left(-243\right)^{13}\)
Bạn học tốt!^^
\(\left(-3^5\right)^{13}=\left(-3\right)^{65}\) nhé
1 /
A = B
2 /
A = 2^300 = (2^3)^100 = 8^100
B = 3^200 = ( 3^2)^100 = 9^100
Vì 8^100 < 9^100 nên A < B
a) Ta có: \(\frac{-13}{38}\)> \(\frac{-13}{88}\)(hai phân số cùng tử)
Lại có \(\frac{-13}{88}\)> \(\frac{-29}{88}\)(hai phân số cùng mẫu)
Suy ra: \(\frac{-13}{38}>\frac{-29}{88}\)
b) Tương tự, ta có \(\frac{22}{29}< \frac{22}{27}< \frac{24}{27}\)
\(\Rightarrow\frac{22}{29}< \frac{24}{27}\)
c)Tương tự, ta có: \(\frac{23}{29}< \frac{23}{27}< \frac{24}{27}\)
\(\Rightarrow\frac{23}{29}< \frac{24}{27}\)
d) Tương tự, ta có: \(\frac{-13}{91}>\frac{-13}{202}>\frac{-29}{202}\)
\(\Rightarrow\frac{-13}{92}>\frac{-29}{202}\)
Ps: Mình làm theo cách so sánh thông qua phân số trung gian, rất mong được tham khảo cách khác nhanh hơn!!!
Bài 4:
\(a,2^{30}=\left(2^3\right)^{10}=8^{10};3^{20}=\left(3^2\right)^{10}=9^{10}\\ Vì:8^{10}< 9^{10}\left(Vì:8< 9\right)\Rightarrow2^{30}< 3^{20}\\ b,9^{10}.27^5=\left(3^2\right)^{10}.\left(3^3\right)^5=3^{20}.3^{15}=3^{35}\\ 243^7=\left(3^5\right)^7=3^{35}\\ Vì:3^{35}=3^{35}\Rightarrow243^7=9^{10}.27^5\)
\(\frac{11}{13}\)và \(\frac{22}{27}\)
Ta có:
\(\frac{11}{13}=\frac{297}{351}\)
\(\frac{22}{27}=\frac{242}{351}\)
Mà: \(\frac{297}{351}>\frac{242}{351}\)
Vậy \(\frac{11}{13}>\frac{22}{27}\)
\(\frac{-5}{11}\)và \(\frac{-9}{23}\)
Ta có:
\(\frac{-5}{11}=\frac{-115}{253}\)
\(\frac{-9}{23}=\frac{-99}{253}\)
Mà: \(\frac{-115}{253}< \frac{-99}{253}\)
Vậy \(\frac{-5}{11}< \frac{-9}{23}\)
a) 275=(33)5=315
2433=(35)3=315
vì 315=315 nên 275=2433
b) 2300=(23)100=8100
3200=(32)100=9100
vì 8100>9100 nên 2300>3200
Ta có: \(\frac{12}{23}>\frac{12}{24}=\frac{1}{2}\)(1)
\(\frac{13}{27}< \frac{13}{26}=\frac{1}{2}\)(2)
Từ (1) và (2), suy ra: \(\frac{12}{23}>\frac{1}{2}>\frac{13}{27}\)
\(\Rightarrow\frac{12}{23}>\frac{13}{27}\)
\(\left(-27\right)^{27}=\left(-3\right)^{3^{27}}=\left(-3\right)^{81}\)
\(\left(-243\right)^{13}=\left(-3\right)^{5^{13}}=\left(-3\right)^{65}\)
\(\Rightarrow\left(-27\right)^{27}< \left(-243^{13}\right)\)