K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2018

Ta có: 2^300=(2^3)^100=8^100

           3^200=(3^2)^100=9^100

Do 8<9 => 8^100<9^100

Hay 2^300<3^200

k cho mik nhé !

Bài 1: so sánh  2300 và 3200

Bài làm

Ta có 2300=(23)100=8100

          2200=(22)100=4100

Vì 8100>4100

Nên 2300>2200

Vậy 2300>2200

10 tháng 9 2017

\(3^{-200}=\left(3^{-2}\right)^{100}=\left(\frac{1}{9}\right)^{100}\)

\(2^{-300}=\left(2^{-3}\right)^{100}=\left(\frac{1}{8}\right)^{100}\)

\(\frac{1}{9}< \frac{1}{8}\Rightarrow\left(\frac{1}{9}\right)^{100}< \left(\frac{1}{8}\right)^{100}\Rightarrow3^{-200}< 2^{-300}\)

\(33^{52}=\left(33^4\right)^{13}\)

\(44^{39}=\left(44^3\right)^{13}\)

\(33^4=\left(33^{\frac{4}{3}}\right)^3\approx106^3\)

\(106^3>44^3\Rightarrow\left(33^4\right)^{13}> \left(44^3\right)^{13}\Rightarrow33^{52}>44^{39}\)

giải 

a)3^-200<2^-300

b)33^52>44^39

Bài 1:

a: Sửa đề: 1/3^200

1/2^300=(1/8)^100

1/3^200=(1/9)^100

mà 1/8>1/9

nên 1/2^300>1/3^200

b: 1/5^199>1/5^200=1/25^100

1/3^300=1/27^100

mà 25^100<27^100

nên 1/5^199>1/3^300

7 tháng 11 2014

2/3<1 nên lũy thừa càng cao càng nhỏ

(2/3)300<2/3<1

(3/2)200>3/2>1

11 tháng 12 2016

a) Ta có: 2300=(23)100=8100

3200=(32)100=9100

Vì 8<9 nên 8100<9100

Vậy 2300<3200

b) Ta có: 2333=(23)111=8111

3222=(32)111=9111

Vì 8<9 nên 8111<9111

Vậy 2333<3222

11 tháng 12 2016

a) 2300 = 23 . 100 = ( 23 )100 = 8100

3200 = 32 . 100 = ( 32 )100 = 9100

Vì 8100 < 9100 nên 2300 < 3200

b) Tương tự

25 tháng 7 2018

\(8^n:2^n=16^{2011}\)

\(\left(2^3\right)^n:2^n=\left(2^4\right)^{2011}\)

\(2^{3n}:2^n=2^{8044}\)

\(2^{3n-n}=2^{8044}\)

\(\Rightarrow3n-n=8044\)

\(2n=8044\)

\(\Rightarrow n=\frac{8044}{2}\)

\(n=4022\)

Vậy \(n=4022\)

16 tháng 11 2021

2300<3200

16 tháng 11 2021

\(2^{300}=\left(2^3\right)^{100}=8^{100}< 9^{100}=\left(3^2\right)^{100}=3^{200}\)

24 tháng 6 2021

`a)2^{300}=(2^3)^100=8^100`

`3^200=(3^2)^100=9^100`

Vì `9^100>8^100`

`=>2^300<3^200`

`b)3xx24^10`

`=3.(3.8)^10`

`=3^{11}.8^10`

`=3^{11}.2^30`

`2^300=2^{30}.2^{270}`

`=2^{30}.8^{90}`

Vì `3^11<8^90`

`=>3^{11}.2^30<8^{90}.2^30=2^300`

`=>3xx24^{10}<2^300+3^20+4^30`

26 tháng 4 2016

ta có :

2300=(23)100=8100

3200=(32)100=9100

vì 8100<9100 nên 2300<3200

\(2^{300}=\left(2^3\right)^{100}\) \(\Rightarrow8^{100}\)

\(3^{200}=\left(3^2\right)^{100}\) \(\Rightarrow9^{100}\)

\(\Rightarrow8^{100}<9^{100}\)\(\Leftrightarrow2^{300}<3^{200}\)

9 tháng 10 2021

TC:(1/2)^300=(1/8)^100

     (1/3)^200=(1/9)^100

     Vì (1/8)^100>(1/9)^100  =>(1/2)^300 >(1/3)^200