Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2300 = (23)100 = 8100
3200 = (32)100 = 9100
Vì 8100 < 9100
=> 2300 < 3200
b, 220 = (25)4 = 324
312 = (33)4 = 274
Vì 324 > 274
=> 220 > 312
c, 2225 = (23)75 = 875
3150 = (32)75 = 975
Vì 875 < 975
=> 2225 < 3150
d, 2115 = (3.7)15 = 315.715
275.498 = (33)5.(72)8 = 315.716
Vì 315.715 < 315.716
=> 2115 < 275.498
Bài 1:
a: Sửa đề: 1/3^200
1/2^300=(1/8)^100
1/3^200=(1/9)^100
mà 1/8>1/9
nên 1/2^300>1/3^200
b: 1/5^199>1/5^200=1/25^100
1/3^300=1/27^100
mà 25^100<27^100
nên 1/5^199>1/3^300
a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì \(8^{100}< 9^{100}\left(8< 9\right)\)
Nên \(2^{300}< 3^{200}\)
b) \(3^x=27\)
\(3^x=3^3\)
Mà \(3^3=27\)
\(\Rightarrow\)\(x=3\)
Vậy x = 3
`a)2^{300}=(2^3)^100=8^100`
`3^200=(3^2)^100=9^100`
Vì `9^100>8^100`
`=>2^300<3^200`
`b)3xx24^10`
`=3.(3.8)^10`
`=3^{11}.8^10`
`=3^{11}.2^30`
`2^300=2^{30}.2^{270}`
`=2^{30}.8^{90}`
Vì `3^11<8^90`
`=>3^{11}.2^30<8^{90}.2^30=2^300`
`=>3xx24^{10}<2^300+3^20+4^30`
\(2^{300}=\left(2^3\right)^{100}=8^{100}< 9^{100}=\left(3^2\right)^{100}=3^{200}\)
b, 2300=23.100=[23]100=8100
3200=32.100=[32]100=9100
=> 8100 < 9100 . Vậy 2300 < 3100
ta có :
2300=(23)100=8100
3200=(32)100=9100
vì 8100<9100 nên 2300<3200
\(2^{300}=\left(2^3\right)^{100}\) \(\Rightarrow8^{100}\)
\(3^{200}=\left(3^2\right)^{100}\) \(\Rightarrow9^{100}\)
\(\Rightarrow8^{100}<9^{100}\)\(\Leftrightarrow2^{300}<3^{200}\)
TC:(1/2)^300=(1/8)^100
(1/3)^200=(1/9)^100
Vì (1/8)^100>(1/9)^100 =>(1/2)^300 >(1/3)^200
2/3<1 nên lũy thừa càng cao càng nhỏ
(2/3)300<2/3<1
(3/2)200>3/2>1