Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có
\(200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)\)
\(=1+2\left(1-\frac{1}{3}\right)+2\left(1-\frac{1}{4}\right)+...+2\left(1-\frac{1}{100}\right)\)
\(=1+2\left(\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\right)\)
\(=2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)
Thế lại bài toán ta được:
\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)
\(=\frac{2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}=2\)
b/ Ta có:
A - B\(=\frac{-21}{10^{2016}}+\frac{12}{10^{2016}}+\frac{21}{10^{2017}}-\frac{12}{10^{2017}}\)
\(=\frac{9}{10^{2017}}-\frac{9}{10^{2016}}< 0\)
Vậy A < B
Ta có:
A=100^2015+1/100^2016+1 suy ra 100A=100^2016+100/100^2016+1=100^2016+1+99/100^2016+1=1/99/100^2016+1
Lại có
B=100^2016+1/100^2017+1 suy ra 100B=100^2017+100/100^2017+1=100^2017+1+99/100^2017+1=1/99/100^2017+1
Vì1/99/100^2016+1>1/99/100^2017+1 suy ra A>B
Ta có: \(A=\frac{2017^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)
\(\Leftrightarrow A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{10}}\)
\(B=\frac{2016^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)
\(\Leftrightarrow B=\frac{\left[\left(20.100+16\right)\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)
Ta có hai tổng A và B mới để so sánh:
\(A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)
\(B=\frac{\left[\left(20.100\right)+16\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)
Tới đây đơn giản rồi. Bạn làm tiếp đi nhé! Mẹ mình bắt tắt máy không cho làm nên đành dừng lại ở đây thôi! Thông cảm :V
Easy.
Ta có: Nếu \(\frac{a}{b}>1\)thì \(\frac{a}{b}>\frac{a+m}{b+m}\left(m>0\right)\) (bạn tự c/m)
Mặt khác,ta có: \(C=\frac{2016^{99}+1}{2016^{89}+1}=\frac{2016\left(2016^{99}+1\right)}{2016\left(2016^{89}+1\right)}\)
\(=\frac{2016^{100}+2016}{2016^{90}+2016}=\frac{\left(2016^{100}+1\right)+2015}{\left(2016^{90}+1\right)+2015}\)
Mà \(\frac{\left(2016^{100}+1\right)+2015}{\left(2016^{90}+1\right)+2015}>1\)
Nên \(C=\frac{\left(2016^{100}+1\right)+2015}{\left(2016^{90}+1\right)+2015}< \frac{2016^{100}+1}{2016^{90}+1}=B\)
Vậy \(B>C\)