Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\cup C=\left(-\infty;5\right)\)
\(\Rightarrow\left(A\cup C\right)\cap B=[2;5)\)
Các tập hợp tạo thành được:
\(\left\{a;b;c\right\};\left\{a;b;d\right\};\left\{a;b;đ\right\};\left\{a;b;e\right\};\left\{a;b;\text{ê}\right\};\\ \left\{a;c;d\right\};\left\{a;c;đ\right\};\left\{a;c;e\right\};\left\{a;c;\text{ê}\right\};\left\{a;d;đ\right\};\\ \left\{a;d;e\right\};\left\{a;d;\text{ê}\right\};\left\{a;đ;e\right\};\left\{a;\text{đ};\text{ê}\right\};\left\{a;e;\text{ê}\right\}\)
Có thể tạo thành 15 tập hợp
a: A={0;1;2;3}
b: B={-16;-13;-10;-7;-4;-1;2;5;8}
c: C={-9;-8;-7;...;7;8;9}
d: \(D=\varnothing\)
Vì khi đó hai vecto AB,AC sẽ cùng phương
=>AB//AC
mà AB và AC có điểm chung là A
nên A,B,C thẳng hàng
\(\dfrac{1-2x}{x+2}\in Z\Leftrightarrow\dfrac{-2\left(x+2\right)+5}{x+2}\in Z\Leftrightarrow-2+\dfrac{5}{x+2}\in Z\\ \Leftrightarrow x+2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow x\in\left\{-7;-3;-1;3\right\}\\ \Leftrightarrow A=\left\{-7;-3;-1;3\right\}\)
+) Định nghĩa của sin α; cos α
Trên đường tròn lượng giác, xét cung AM có số đo α
Gọi H và K lần lượt là hình chiếu của M trên trục Ox, Oy.
Tung độ y = OK¯ của điểm M được gọi là sin của α : sin α = OK¯
Hoành độ x = OH¯ của điểm M được gọi là cos của α : cos α = OH¯
Trên đường tròn lượng giác trong mặt phẳng Oxy, lấy điểm A (1; 0) làm gốc.
Khi đó các cung có số đo hơn kém nhau một bội của 2π có điểm cuối trùng nhau.
Giả sử cung α có điểm cuối là M(x; y)
Khi đó với mọi k ∈ Z thì cung α + k2π cũng có điểm cuối là M.
sin α = y, sin (α + k2π) = y nên sin(α + k2π) = sinα
cos α = x, cos(α + k2π) = x nên cos(α + k2π) = cosα
\(A=\left\{1;2;5\right\}\\ \Leftrightarrow Chọn.C\)
Dạ cảm ơn nhiều ạ.