K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 3 2023

Đặt \(3^x=t>0\Rightarrow t^2-2\left(7-x\right)t+45-18x=0\)

\(\Delta'=\left(7-x\right)^2-\left(45-18x\right)=\left(x+2\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=7-x+x+2=9\\t=7-x-\left(x+2\right)=5-2x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3^x=9\Rightarrow x=2\\3^x=5-2x\left(1\right)\end{matrix}\right.\)

Xét (1) \(\Leftrightarrow3^x+2x-5=0\)

Nhận thấy \(x=1\) là 1 nghiệm của (1)

Xét hàm \(f\left(x\right)=3^x+2x-5\Rightarrow f'\left(x\right)=3^x.ln3+2>0;\forall x\)

\(\Rightarrow f\left(x\right)\) đồng biến trên R nên \(f\left(x\right)\) có tối đa 1 nghiệm

\(\Rightarrow x=1\) là nghiệm duy nhất của (1)

Vậy pt đã cho có 2 nghiệm thực \(x=\left\{1;2\right\}\)

2 tháng 4 2017

Ta có:

f(x) = ax2 – 2(a + 1)x + a + 2 = (x – 1)(ax – a- 2) nên phương trình f(x) = 0 luôn có hai nghiệm thực là:

x = 1, x=a+2ax=a+2a

Theo định lí Vi-et, tổng và tích của các nghiệm đó là:

S=2a+2a,P=a+2aS=2a+2a,P=a+2a

1. Khảo sát sự biến thiên và vẽ đồ thị hàm số S=2a+2a=2+2aS=2a+2a=2+2a

- Tập xác định : (-∞, 0)∪ (0, +∞)

- Sự biến thiên: S′=−2a2<0,∀a∈(−∞,0)∪(0,+∞)S′=−2a2<0,∀a∈(−∞,0)∪(0,+∞) nên hàm số nghịch biến trên hai khoảng (-∞, 0) và (0, +∞)

- Cực trị: Hàm số không có cực trị

- Giới hạn tại vô cực và tiệm cận ngang

lima→+∞S=lima→+∞(2+2a)=2lima→−∞S=lima→−∞(2+2a)=2lima→+∞⁡S=lima→+∞⁡(2+2a)=2lima→−∞⁡S=lima→−∞⁡(2+2a)=2

Vậy S = 2 là tiệm cận ngang

- Giới hạn vô cực và tiệm cận đứng:

lima→0+S=lima→0+(2+2a)=+∞lima→0−S=lima→0−(2+2a)=−∞lima→0+⁡S=lima→0+⁡(2+2a)=+∞lima→0−⁡S=lima→0−⁡(2+2a)=−∞

Vậy a = 0 là tiệm cận đứng.

- Bảng biến thiên:

Đồ thị hàm số:

Đồ thị không cắt trục tung, cắt trục hoành tại a = -1

2) Khảo sát sự biến thiên và vẽ đồ thị hàm số P=a+2a=1+2aP=a+2a=1+2a

Tập xác định: D = R\{0}

S′=−2a2<0,∀a∈DS′=−2a2<0,∀a∈D

lima→0−S=−∞lima→0−⁡S=−∞⇒ Tiệm cận đứng: a = 0

lima→±∞S=1lima→±∞⁡S=1⇒ Tiệm cận ngang: S = 1

Đồ thị hàm số:

Ngoài ra: đồ thị hàm số P=a+2a=1+2aP=a+2a=1+2a có thể nhận được bằng cách tịnh tiến đồ thị S=2a+2a=2+2aS=2a+2a=2+2a dọc theo trục tung xuống phía dưới 1 đơn vị.



5 tháng 4 2016

Điều kiện :

\(\begin{cases}x-2>0\\3x-5>0\end{cases}\) \(\Leftrightarrow x>2\)

Phương trình tương đương \(\log_2\left(x-2\right)+\log_2\left(3x-5\right)=2\)

                                        \(\Leftrightarrow\log_2\left[\left(x-2\right)\left(3x-5\right)\right]=2\Leftrightarrow3x^2-11x+6=0\)

Giải phương trình trên và đối chiếu với điều kiện ta được nghiệm phương trình đã cho là x=3

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số