Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-6x+8=x\left(x-1\right)-5\left(x-1\right)+3=\left(x-1\right)\left(x-5\right)+3\)
Biện pháp tu từ được sử dụng trong câu "sương vô tình đậu trên mắt rưng rưng" là sự lặp lại âm tiết "rưng rưng". Tác dụng của biện pháp này là tạo ra hiệu ứng âm thanh đặc biệt, tăng cường tính hài hòa và nhấn mạnh sự mơ hồ, mờ ảo của cảnh tượng mà câu muốn diễn tả. Ngoài ra, biện pháp tu từ còn giúp tạo ra sự nhấn mạnh, tăng cường tính cảm xúc và sự chú ý của người đọc đối với câu. có đúng khum thì ko bít nữa nhớ tick ạ
Ta có:
\(x^2-xy=6x-5y-8\)
\(\Leftrightarrow x\left(x-y\right)-5\left(x-y\right)=x-8\)
\(\Leftrightarrow\left(x-5\right)\left(x-y\right)-\left(x-5\right)=-3\)
\(\Leftrightarrow\left(x-5\right)\left(x-y-1\right)=-3\)
Ta có bảng sau:
x - 5 | -1 | -3 | 1 | 3 |
x - y - 1 | 3 | 1 | -3 | -1 |
x | 4 | 2 | 6 | 8 |
y | 0 | 0 | 8 | 8 |
Vậy...
\(x^2-xy=6x-5y-8\\ \Leftrightarrow\left(x^2-5x\right)-\left(xy-5y\right)-\left(x-5\right)=-3\\ \Leftrightarrow x\left(x-5\right)-y\left(x-5\right)-\left(x-5\right)=-3\\ \Leftrightarrow\left(x-y-1\right)\left(x-5\right)=-3\\ =\left(-1\right)\cdot3=3\cdot\left(-1\right)=1\cdot\left(-3\right)=\left(-3\right)\cdot1\)
Do \(x;y\in Z\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y-1=-1\\x-5=3\end{matrix}\right.\\\left\{{}\begin{matrix}x-y-1=3\\x-5=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x-y-1=1\\x-5=-3\end{matrix}\right.\\\left\{{}\begin{matrix}x-y-1=-3\\x-5=1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}8-y-1=-1\\x=8\end{matrix}\right.\\\left\{{}\begin{matrix}4-y-1=3\\x=4\end{matrix}\right.\\\left\{{}\begin{matrix}2-y-1=1\\x=2\end{matrix}\right.\\\left\{{}\begin{matrix}6-y-1=-3\\x=6\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=8\\y=8\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=6\\y=8\end{matrix}\right.\end{matrix}\right.\)
Vậy pt có tập nghiệm nguyên \(\left\{x;y\right\}=\left\{8;8\right\};\left\{4;0\right\};\left\{2;0\right\};\left\{6;8\right\}\)
Lời giải:
Ta có:
$6x^2y^3+3x^2-10y^3=-2$
$\Leftrightarrow 2y^3(3x^2-5)+(3x^2-5)=-7$
$\Leftrightarrow (2y^3+1)(3x^2-5)=-7$
Vì $x,y$ nguyên nên $2y^3+1; 3x^2-5$ cũng đều nhận giá trị nguyên.
Đến đây ta xét các TH:
TH1: $2y^3+1=-1; 3x^2-5=7$
TH2: $2y^3+1=1; 3x^2-5=-7$
TH3: $2y^3+1=-7; 3x^2-5=1$
TH4: $2y^3+1=7; 3x^2-5=-1$
Giải lần lượt các TH ta được $x=\pm 2; y=-1$
\(5y^2+3y=-2x^2+8x=8-\left(2x^2-8x+8\right)=8-2\left(x-2\right)^2\le8\)<=> \(5y^2+3y-8\le0< =>\left(5y+8\right)\left(y-1\right)\le0< =>\frac{-8}{5}\le y\le1\)
y nguyên => y = -1; 0; 1
y=-1 => \(2x^2+5-8x-3=0< =>x^2-4x+1=0\)(không có nghiệm x nguyên)
y=0 =>\(2x^2+0-8x-0=0< =>2x^2-8x=0< =>\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
y=1 =>\(2x^2+5-8x+3=0< =>x^2-4x+4=0< =>x=2\)
vậy pt có nghiệm (x;y) = (0;0) (4;0) (2;1)
5y^2>=0
6x^2<=74
x^2<=12
x^2=1;4;9
tu tim y^2 nhe