K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2017

Lưu ý với

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đó, trong các số đã cho thì    ( 0 , 4 ) - 0 , 3   >   1

Chọn B.

7 tháng 8 2023

\(y'=0\Leftrightarrow4x^3-4x=0\Leftrightarrow4x\left(x^2-1\right)=0\\ \Leftrightarrow x=\pm1.và.x=0\)

\(HSNB:\left(-\infty;-1\right)\cup\left(0;1\right)\\ HSĐB:\left(-1;0\right)\cup\left(1;+\infty\right)\)

20 tháng 8 2017

Đáp án: B.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

max y = 4/3.

30 tháng 10 2017

Đáp án: B.

Các phương trình còn lại có nhiều hơn một nghiệm:

(x - 5)( x 2  - x - 12) = 0 có các nghiệm x = 5, 4, -3.

sin 2 x - 5sinx + 4 = 0 ⇔ sinx = 1, có vô số nghiệm

sinx - cosx + 1 = 0 có các nghiệm x = 0, x = 3 π /2

31 tháng 5 2019

Đáp án: B.

Các phương trình còn lại có nhiều hơn một nghiệm:

(x - 5)( x 2  - x - 12) = 0 có các nghiệm x = 5, 4, -3.

sin 2 x  - 5sinx + 4 = 0 ⇔ sinx = 1, có vô số nghiệm

sinx - cosx + 1 = 0 có các nghiệm x = 0, x = 3π/2.

11 tháng 12 2017

Đáp án: B.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

max y = 4/3

Câu 1:Cho  mặt phẳng (P) đi qua hai điểm A(3; 1; -1), B(2; -1; 4) và vuông góc với mặt phẳng (Q): 2x –y + 3z –1 = 0. Phương trình nào dưới đây là phương trình của (P)?A. 13  5  5  0x  yz−  − +=B. 13  5  5  0x  yz+  − +=C. 13   5  5  0x  yz−  + +=D. 13  5  12  0x  yz− −+=Câu 2:Cho mặt cầu (S):()()2223      5      9.x  yz− ++ +=Tọa độ tâm I của mặt cầu là:A. ()3;5;0IB. ()3; 5;0I−C. ()3;5;0I−D. ()3; 5;0I−−Câu 3:Chomặt phẳng (): ...
Đọc tiếp

Câu 1:Cho  mặt phẳng (P) đi qua hai điểm A(3; 1; -1), B(2; -1; 4) và vuông góc với mặt phẳng (Q): 2x –y + 3z –1 = 0. Phương trình nào dưới đây là phương trình của (P)?A. 13  5  5  0x  yz−  − +=B. 13  5  5  0x  yz+  − +=C. 13   5  5  0x  yz−  + +=D. 13  5  12  0x  yz− −+=Câu 2:Cho mặt cầu (S):()()2223      5      9.x  yz− ++ +=Tọa độ tâm I của mặt cầu là:A. ()3;5;0IB. ()3; 5;0I−C. ()3;5;0I−D. ()3; 5;0I−−Câu 3:Chomặt phẳng ():      60xyzα++−=. Điểm nào dưới đây không thuộc ()α?A. (2;2;2)MB. (3;3;0)NC. (1;2;3)Q.D. (1; 1;1)P−Câu 4:Cho 3 điểm A(2; 2; -3), B(4; 0;1), C(3; -2;-1). Khi đó tọa độ trọng tâm G của tam giác ABC là:A. G(3; 0; -1).B. G(-3; 0; 1).C. G(3; 0; 0).D. G(3; 0; 1).Câu 5:Cho mặt cầu ()2  22:(  3)  (   2)  (  1)  100Sx        y        z− ++ +− =và mặt phẳng ():2  2     9 0x  yzα− −+=. Mặt phẳng ()αcắt mặt cầu ()Stheo một đường tròn ()C. Tính bán kính rcủa ()C.A. 6r=.B. 3r=.C. 8r=.D. 22r=.

0
15 tháng 2 2019

Đáp án: C

Vì f'(x) = ( x 5  + x 3  - 7)' = 5 x 4  + 3 x 2  ≥ 0, ∀x ∈ R (dấu "=" xảy ra ⇔ x = 0). Suy ra f(x) đồng biến trên R. Mặt khác f(0) = -7, f(2) = 32 + 8 - 7 = 33 > 0. Hàm f(x) liên tục trên đoạn [0;2] nên tồn tại x0 ∈ (0;2) để f(x0) = 0. Suy ra f(x) = 0 có nghiệm duy nhất trên R.

Cách khác: Phương trình 3 sin 2 x - cos 2 x + 5 = 0

⇔ 3 sin 2 x  +  sin 2 x  + 4 = 4( sin 2 x  + 1) = 0, vô nghiệm

Các phương trình  x 2  - 5x + 6 = 0 và 3tanx - 4 = 0 có nhiều hơn một nghiệm. Từ đó suy ra phương trình  x 5 +  x 3  - 7 = 0 có nghiệm duy nhất trên R.

11 tháng 6 2017

Đáp án: C

Vì f'(x) = ( x 5 + x 3  - 7)' = 5 x 4  + 3 x 2   ≥ 0, ∀ x ∈ R (dấu "=" xảy ra ⇔ x = 0). Suy ra f(x) đồng biến trên R. Mặt khác f(0) = -7, f(2) = 32 + 8 - 7 = 33 > 0. Hàm f(x) liên tục trên đoạn [0;2] nên tồn tại x 0   ∈  (0;2) để f( x 0 ) = 0. Suy ra f(x) = 0 có nghiệm duy nhất trên R.

Cách khác: Phương trình 3 sin 2 x + c o s 2 x  + 5 = 0

⇔ 3 sin 2 x  +  sin 2 x  + 4 = 4( sin 2 x  + 1) = 0, vô nghiệm

Các phương trình  x 2  - 5x + 6 = 0 và 3tanx - 4 = 0 có nhiều hơn một nghiệm. Từ đó suy ra phương trình  x 5 + x 3  - 7 = 0 có nghiệm duy nhất trên R.

3 tháng 10 2018

Đáp án : A.