K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

Đáp án: C

Vì f'(x) = ( x 5 + x 3  - 7)' = 5 x 4  + 3 x 2   ≥ 0, ∀ x ∈ R (dấu "=" xảy ra ⇔ x = 0). Suy ra f(x) đồng biến trên R. Mặt khác f(0) = -7, f(2) = 32 + 8 - 7 = 33 > 0. Hàm f(x) liên tục trên đoạn [0;2] nên tồn tại x 0   ∈  (0;2) để f( x 0 ) = 0. Suy ra f(x) = 0 có nghiệm duy nhất trên R.

Cách khác: Phương trình 3 sin 2 x + c o s 2 x  + 5 = 0

⇔ 3 sin 2 x  +  sin 2 x  + 4 = 4( sin 2 x  + 1) = 0, vô nghiệm

Các phương trình  x 2  - 5x + 6 = 0 và 3tanx - 4 = 0 có nhiều hơn một nghiệm. Từ đó suy ra phương trình  x 5 + x 3  - 7 = 0 có nghiệm duy nhất trên R.

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

15 tháng 2 2019

Đáp án: C

Vì f'(x) = ( x 5  + x 3  - 7)' = 5 x 4  + 3 x 2  ≥ 0, ∀x ∈ R (dấu "=" xảy ra ⇔ x = 0). Suy ra f(x) đồng biến trên R. Mặt khác f(0) = -7, f(2) = 32 + 8 - 7 = 33 > 0. Hàm f(x) liên tục trên đoạn [0;2] nên tồn tại x0 ∈ (0;2) để f(x0) = 0. Suy ra f(x) = 0 có nghiệm duy nhất trên R.

Cách khác: Phương trình 3 sin 2 x - cos 2 x + 5 = 0

⇔ 3 sin 2 x  +  sin 2 x  + 4 = 4( sin 2 x  + 1) = 0, vô nghiệm

Các phương trình  x 2  - 5x + 6 = 0 và 3tanx - 4 = 0 có nhiều hơn một nghiệm. Từ đó suy ra phương trình  x 5 +  x 3  - 7 = 0 có nghiệm duy nhất trên R.

30 tháng 10 2017

Đáp án: B.

Các phương trình còn lại có nhiều hơn một nghiệm:

(x - 5)( x 2  - x - 12) = 0 có các nghiệm x = 5, 4, -3.

sin 2 x - 5sinx + 4 = 0 ⇔ sinx = 1, có vô số nghiệm

sinx - cosx + 1 = 0 có các nghiệm x = 0, x = 3 π /2

31 tháng 5 2019

Đáp án: B.

Các phương trình còn lại có nhiều hơn một nghiệm:

(x - 5)( x 2  - x - 12) = 0 có các nghiệm x = 5, 4, -3.

sin 2 x  - 5sinx + 4 = 0 ⇔ sinx = 1, có vô số nghiệm

sinx - cosx + 1 = 0 có các nghiệm x = 0, x = 3π/2.

29 tháng 5 2017

7 tháng 6 2017

a) \(2^{x+4}+2^{x+2}=5^{x+1}+3\cdot5^x\)

\(\Rightarrow2^x+2^4+2x^x+2^2=5^x\cdot x+3\cdot5^x\)

\(\Leftrightarrow2^x+16+2^x\cdot4=5\cdot5^x+3\cdot5^x\)

\(\Leftrightarrow16\cdot2^x+4\cdot2^x=8\cdot5^x\)

\(\Leftrightarrow20\cdot2^x=8\cdot5^x\)

\(\Leftrightarrow20\cdot\left(\dfrac{2}{5}\right)^x=8\)

\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\dfrac{2}{5}\)

\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\left(\dfrac{2}{5}\right)^1\)

\(\Rightarrow x=1\)