K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) - Số dân tỉnh đó sau 1 năm là: \(800 + 800.r\%  = 800.\left( {1 + r\% } \right)\)

- Số dân tỉnh đó sau 2 năm là: \(\begin{array}{l}800 + 800r\%  + (800 + 800r\% ).r\% \\ = 800 + 1600.r\%  + 800.{(r\% )^2} = 800.(1 + 2r\%  + {(r\% )^2})\\ = 800{(r\%  + 1)^2}\end{array}\)

 - Số dân tỉnh đó sau 5 năm là:   \(800.{(1 + r?\% )^5}\)

b) Ước tính số dân của tỉnh đó sau 5 năm nữa với \(r\%  = 1,5\% \)là:

\(800.{(1 + 0,015)^5} = 800.(1 + {5.1^4}.0,015) = 860\) (nghìn người)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

Sắp xếp lại:

0,81

0,97

1,09

1,19

1,25

1,27

1,79

1,81

1,85

2,01

7,52

Số trung bình Có 11 tỉnh thành nên n=11.

\(\begin{array}{l}\overline X = \frac{{7,52 + ... + 1,19 + ... + 0,97}}{{11}}\\ = 1,96\end{array}\)

Trung vị: 1,27

b) Ta thấy 7,52 lệch hẳn so với giá trị trung bình nên đây là giá trị bất thường của mẫu số liệu

=> Số trung bình và trung vị lại có sự sai khác nhiều

c) Nên sử dụng trung vị để đại diện cho dân số của các tỉnh thuộc Đồng bằng Bắc Bộ.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a)

Tỉnh Thái Bình:

Số trung bình \(\overline x  = \frac{{1061,9 + 1061,9 + 1053,6 + 942,6 + 1030,4}}{5} = 1030,08\)

Phương sai \({S^2} = \frac{1}{5}\left( {1061,{9^2} + 1061,{9^2} + 1053,{6^2} + 942,{6^2} + 1030,{4^2}} \right) - 1030,{08^2} = 2046,2\)

=> Độ lệch chuẩn \(S = \sqrt {{S^2}}  \approx 45,2\)

+) Khoảng biến thiên \(R = 1061,9 - 942,6 = 119,3\)

Tỉnh Hậu Giang:

Số trung bình \(\overline x  = \frac{{1204,6 + 1293,1 + 1231,0 + 1261,0 + 1246,1}}{5} = 1247,16\)

Phương sai \({S^2} = \frac{1}{6}\left( {1204,{6^2} + 1293,{1^2} + 1231,{0^2} + 1261,{0^2} + 1246,{1^2}} \right) - 1247,{16^2} = 875,13\)

=> Độ lệch chuẩn \(S = \sqrt {{S^2}}  \approx 29,6\)

+) Khoảng biến thiên \(R = 1293,1 - 1204,6 = 88,5\)

b)

So sánh khoảng biến thiên và độ lệch chuẩn ta đều thấy tỉnh Hậu Giang có sản lượng lúa ổn định hơn.

Sản lượng nuôi tôm phân theo địa phương của các tỉnh Cà Mau và Tiền Giang được thể hiện ở hai biểu đồ sau (đơn vị: tấn):a) Hãy cho biết các phát biểu sau là đúng hay sai?i. Sản lượng nuôi tôm mỗi năm của tỉnh Tiền Giang đều cao hơn tỉnh Cà Mau.ii. Ở tỉnh Cà Mau, sản lượng nuôi tôm năm 2018 tăng gấp hơn 4 lần so với năm 2008.iii. Ở tỉnh Tiền Giang, sản lượng nuôi tôm năm 2018 tăng...
Đọc tiếp

Sản lượng nuôi tôm phân theo địa phương của các tỉnh Cà Mau và Tiền Giang được thể hiện ở hai biểu đồ sau (đơn vị: tấn):

a) Hãy cho biết các phát biểu sau là đúng hay sai?

i. Sản lượng nuôi tôm mỗi năm của tỉnh Tiền Giang đều cao hơn tỉnh Cà Mau.

ii. Ở tỉnh Cà Mau, sản lượng nuôi tôm năm 2018 tăng gấp hơn 4 lần so với năm 2008.

iii. Ở tỉnh Tiền Giang, sản lượng nuôi tôm năm 2018 tăng gấp hơn 2,5 lần so với năm 2008.

iv. Ở tỉnh Tiền Giang, từ năm 2008 đến năm 2018, sản lượng nuôi tôm mỗi năm tăng trên 50% so với năm cũ.

v. Trong vòng 5 năm từ 2013 đến 2018, sản lượng nuôi tôm của tỉnh Cà Mau tăng cao hơn của tỉnh Tiền Giang.

b) Để so sánh sản lượng nuôi tôm của hai tỉnh Cà Mau và Tiền Giang, ta nên sử dụng loại biểu đồ nào?

1
HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a)    

Phát biểu i sai vì ở Tiền Giang sản lượng các năm đều nhỏ hơn 30 000 tấn, còn ở Cà Mau sản lượng các năm đều lớn hơn 75 000 tấn.

Phát biểu ii sai do sản lượng nuôi tôm ở Cà Mau năm 2018 là 175 000 tấn gấp gần 2 lần năm 2008 là 95 000 tấn.

Phát biểu iii đúng do sản lượng nuôi tôm ở Tiền Giang năm 2018 là 28 500 tấn gấp hơn 2,5 lần năm 2008 là 10 000 tấn.

Phát biểu iv đúng do sản lượng nuôi tôm ở Tiền Giang năm 2008 là 10000 tấn, năm 2013 là 17 500 tấn và năm 2018 là 28 500 tấn, đều tăng trên 50% so với năm cũ.

Phát biểu v sai do từ năm 2013 đến 2018, tỉnh Cà Mau tăng 175 000 – 140 000 = 35 000 tấn, tương ứng 25% còn tỉnh Tiền Giang, tăng (28 500 – 17 500) : 17 500 = 63%

b)

Để so sánh sản lượng nuôi tôm của hai tỉnh Cà Mau và Tiền Giang, ta nên sử dụng loại biểu đồ cột kép.

Một công ty bắt đầu sản xuất và bán một loại máy tính xách tay từ năm 2018. Số lượng loại máy tính đó bán được trong hai năm liên tiếp 2018 và 2019 lần lượt là 3,2 nghìn và 4 nghìn chiếc. Theo nghiên cứu dự báo thị trường của công ty, trong khoảng 10 năm từ năm 2018, số lượng máy tính loại đó bán được mỗi năm có thể mô tả bởi một hàm số bậc hai.Giả sử t là thời gian (đơn vị...
Đọc tiếp

Một công ty bắt đầu sản xuất và bán một loại máy tính xách tay từ năm 2018. Số lượng loại máy tính đó bán được trong hai năm liên tiếp 2018 và 2019 lần lượt là 3,2 nghìn và 4 nghìn chiếc. Theo nghiên cứu dự báo thị trường của công ty, trong khoảng 10 năm từ năm 2018, số lượng máy tính loại đó bán được mỗi năm có thể mô tả bởi một hàm số bậc hai.

Giả sử t là thời gian (đơn vị theo năm) tính từ năm 2018. Số lượng loại máy đó bán đượng trong năm 2018 và 2019 lần lượt được biểu diễn bởi các điểm \((0;3,2)\) và \((1;4).\) Giả sử điểm \((0;3,2)\) là đỉnh của đồ thị của hàm số bậc hai này.

a) Lập công thức của hàm số mô tả số lượng máy xách tay bán được qua từng năm.

b) Tính số lượng máy tính xách tay đó bán được trong năm 2024.

c) Đến năm bao nhiêu thì số lượng máy tính xách tay đó bán được trong năm sẽ vượt mức 52 nghìn chiếc?

1
HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Gọi hàm số bậc hai cần tìm là: \(y = a{t^2} + bt + c.\)

Ta có: đỉnh \(I\left( {0;3,2} \right)\) và đi qua điểm \(\left( {1;4} \right)\)

nên \(\left\{ {\begin{array}{*{20}{c}}{ - \frac{b}{{2a}} = 0}\\{c = 3,2}\\{a + b + c = 4}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{b = 0}\\{c = 3,2}\\{a + c = 4}\end{array}\,\,} \right. \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = 0,8}\\{b = 0}\\{c = 3,2}\end{array}} \right.\)

Vậy hàm số cần tìm là: \(y = 0,8{t^2} + 3,2\)

b)  Thời gian từ năm 2018 đến năm 2024 là: \(t = 2024 - 2018 = 6\) năm

Số lượng máy tính xách tay bán được trong năm 2024 là:

\(0,{8.6^2} + 3,2 = 32\) nghìn chiếc

c) Năm bán đượng vượt mức 52 nghìn chiếc máy tính là:

\(\begin{array}{l}0,8{t^2} + 3,2 > 52\\ \Leftrightarrow \,\,0,8{t^2} - 48,8 > 0\\ \Leftrightarrow \,\,t \in \left( { - \infty ; - \sqrt {61} } \right) \cup \left( {\sqrt {61} ; + \infty } \right)\end{array}\)

Vì \(t > 0\) nên \(t \in \left( {\sqrt {61} ; + \infty } \right)\) hay \(t > \sqrt {61}  \approx 7,8\).

Từ năm thứ 8 hay năm 2026 thì số lượng máy tính xách tay bán ra vượt mức 52 nghìn chiếc.

21 tháng 12 2022

a.Số trung bình của dãy số liệu trên là:

(0,81 + 0,97 + 1,09 +1,19 +1,25 + 1,27 +1,79+1,81+1,85+2,01+7,52):11 = 1,96

b) Trong các số liệu có một giá trị bất thường so với các giá trị còn lại là 7,52 do đó ảnh hưởng đến giá trị trung bình của số liệu. Dẫn đến có sự chênh lệch giữa giá trị trung bình và trung vị.

c) Trung bình và trung vị là các thuật ngữ thống kê có vai trò hơi giống nhau trong việc hiểu xu hướng trung tâm của một tập hợp thống kê. Nhưng có giá trị 7,52 là giá trị khác biệt so với các giá trị còn lại nên gây ảnh hưởng đến số trung bình. Do đó ta nên sử dụng số trung vị để đại diện cho dân số các tỉnh thuộc Đồng bằng Bắc Bộ.

21 tháng 12 2022

a.Số trung bình của dãy số liệu trên là:

(0,81 + 0,97 + 1,09 +1,19 +1,25 + 1,27 +1,79+1,81+1,85+2,01+7,52):11 = 1,96

b) Trong các số liệu có một giá trị bất thường so với các giá trị còn lại là 7,52 do đó ảnh hưởng đến giá trị trung bình của số liệu. Dẫn đến có sự chênh lệch giữa giá trị trung bình và trung vị.

c) Trung bình và trung vị là các thuật ngữ thống kê có vai trò hơi giống nhau trong việc hiểu xu hướng trung tâm của một tập hợp thống kê. Nhưng có giá trị 7,52 là giá trị khác biệt so với các giá trị còn lại nên gây ảnh hưởng đến số trung bình. Do đó ta nên sử dụng số trung vị để đại diện cho dân số các tỉnh thuộc Đồng bằng Bắc bộ

Trên mạng có nhaa thầy

10 tháng 3 2018

Vì độ chính xác đến hàng trăm ( d = 150 ) nên ta quy tròn a đến hàng nghìn. Vậy số quy tròn của a là 1 718 000.

Đáp án là A.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Nhìn vào biểu đồ ta thấy số lượng trường THPT của các tỉnh năm 2018 đều lớn hơn so với năm 2008 nên khẳng định ở câu a) là đúng.

Số lượng trường THPT ở Gia Lai năm 2008 là gần 35 trường, nhưng số lượng trường năm 2018 lại nhỏ hơn 45 trường do đó khẳng định ở câu b) là sai.