Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không tồn tại cặp số theo ycbt vì 1/x+y = 1/x +1/y = (x+y)/xy
=> (x+y)^2 = xy
không tìm đc vì 1 vế luôn dương, 1 vế x.y luôn âm do trái dấu => không có
giả sử tồn tại hai số hữu tỉ thỏa mãn đẳng thức :
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
\(\Rightarrow\frac{1}{x+y}=\frac{y+x}{xy}\)
\(\Rightarrow xy=\left(x+y\right)\left(y+x\right)\)
\(\Rightarrow xy=\left(x+y\right)^2\)
Mà x và y là hai số trái dấu => ( x + y )2 > 0 còn xy < 0
Vậy ...
\(xy^2-\left(x-2\right)\left(x^4+2x+1\right)=2y^2\)
\(\Rightarrow xy^2-2y^2-\left(x-2\right)\left(x^4+2x+1\right)=0\)
\(\Rightarrow y^2\left(x-2\right)-\left(x-2\right)\left(x^4+2x+1\right)=0\)
\(\Rightarrow\left(x-2\right)\left(y^2-x^4-2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\y^2-x^4-2x-1=0\end{matrix}\right.\)
Thay \(x=2\) vào \(y^2-x^4-2x-1=0\) ta có:
\(y^2-2^4-2\cdot2-1=0\)
\(\Rightarrow y^2-21=0\)
\(\Rightarrow y^2=21\)
\(\Rightarrow\left[{}\begin{matrix}y=\sqrt{21}\\y=-\sqrt{21}\end{matrix}\right.\)
Vậy (x;y) thỏa mãn là: \(\left(2;\sqrt{21}\right);\left(2;-\sqrt{21}\right)\)
lý thuyết đầy đủ các phuong phap giai phuong trinh nghiem nguyen
Ta có :1/(x+y)=1/x+1/y
=>1/(x+y)=(x+y)/xy
=>(x+y)(x+y)=xy
=>(x+y)2=xy
Vì (x+y)2 >= 0 với mọi x ,y(*)
Mà xy<0( do x,y trái dấu). Mâu thuẫn với (*)
=> không tồn tại (x;y) thoả mãn đề bài
vậy.........
Có 2 cặp nhé!
Đề chép sai kêu ai trả lời hộ đây???
ĐỀ ĐÚNG là thế này: Số cặp số (x;y) trái dấu thỏa mãn: \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)