K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2016

(x+3)(x2-16)(x3-8)(x4-9)=0

<=>có 4 TH

TH1:x+3=0=>x=-3

TH2:x2-16=0=>x2=16=>x E {-4;4}

TH3:x3-8=0=>x3=8=>x=2

TH4:x4-9=0=>x4=9(loại)

Tổng các giá trĩ của x là:(-4)+4+2+(3)=0+2+(-3)=2+(-3)=-1

3 tháng 3 2016

=>*x+3=0 =>x=-3

*x^2-16=0=>x=4;-4

*x^3-8=0=>x=2

x^4-9=0=>x=căn 3;-căn 3

=>tổng các giá trị của x là -1

3 tháng 3 2016

Ta có : (x + 3) (x2 - 16) (x3 - 8) (x4 - 9) = 0

Có 4 TH xảy ra :

TH1 : x + 3 = 0 => x = -3

TH2 : x2 - 16 = 0 => x2 = 16 => x = ±4

TH3 : x3 - 8 = 0 => x3 = 8 => x = 2

TH4 : x4 - 9 = 0 => x4 = (x2)2 = 9 => x2 = ±3  (ko thoả mãn)

Tổng các giá trị x thỏa mãn là : -3 + 4 - 4 + 2 = -1

2 tháng 8 2015

ta có \(\left(x+\frac{5}{4}\right).\left(x-\frac{9}{7}\right)\left(x-\frac{9}{7}\right)\)

suy ra \(\left(x+\frac{5}{4}\right)\)là số dương còn \(\left(x-\frac{9}{7}\right)\)là số âm

x+5/4>0suy ra x>0-5/4 suy ra x>-5/4

x-9/7<0 suy ra x<9/7+0 suy ra x<9/7

-5/4<x<9/7

 

24 tháng 12 2018

\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

\(TH1:x+y+z=0\)

\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)

\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)

\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)

\(TH2:x+y+z\ne0\)

\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)

sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N 

mà đề là x+y+z khác 0 -.-

24 tháng 12 2018

cảm ơn nhiều

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu cặp...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0
16 tháng 8 2016

\(\left(x^2-2x\right)\left|3x-7\right|=0\)

=> TH1: \(x^2-2x=0\) => \(x\left(x-2\right)=0\)

=> x = 0 hoặc 2

TH2: \(3x-7=0\)

=> \(3x=-7\) => \(x=-\frac{3}{7}\)

Vậy có 3 giá trị x thoả mãn

16 tháng 8 2016

(x2-2x)*|3x-7|=0

=>x2-2x=0 hoặc |3x-7|=0

Xét x2-2x=0 =>x(x-2)=0

=>x=0 hoặc 2

Xét |3x-7|=0 =>3x-7=0

=>3x=7

=>x=7/3

Vậy có 3 giá trị x thỏa mãn

12 tháng 8 2019

\(\left(x-\frac{3}{5}\right).\left(x+\frac{2}{7}\right)< 0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}< 0\\x+\frac{2}{7}>0\end{cases}\text{hoặc}\hept{\begin{cases}x-\frac{3}{5}>0\\x+\frac{2}{7}< 0\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x< \frac{3}{5}\\x>-\frac{2}{7}\end{cases}\text{hoặc}\hept{\begin{cases}x>\frac{3}{5}\\x< -\frac{2}{7}\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}-\frac{2}{7}< x< \frac{3}{5}\\x\in\varnothing\end{cases}}\)

\(\Rightarrow-\frac{2}{7}< x< \frac{3}{5}\)

\(\Rightarrow x=0\)

Vậy x = 0

12 tháng 8 2019

\(\left(x-\frac{3}{5}\right)\cdot\left(x+\frac{2}{7}\right)< 0\)

TH1 : \(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}< 0\\x+\frac{2}{7}>0\end{cases}}\)                 \(\Rightarrow\hept{\begin{cases}x< \frac{3}{5}\\x>-\frac{2}{7}\end{cases}}\)              \(\Rightarrow\text{ }-\frac{2}{7}< x< \frac{3}{5}\)

TH2 : \(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}>0\\x+\frac{2}{7}< 0\end{cases}}\)                 \(\Rightarrow\hept{\begin{cases}x>\frac{3}{5}\\x< -\frac{2}{7}\end{cases}}\)             \(\Rightarrow\text{ Không xảy ra}\)

                            Vì \(x\in Z\text{ }\Rightarrow\text{ }x=0\)