K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

Phương pháp:

Cấp số nhân ( u n )  có số hạng đầu u 1  và công bội q thì có số hạng thứ n là

Cách giải:

Gọi số hạng thứ n là u n = 1458

⇔ 2 . 3 n - 1 = 1458  

⇔ 3 n - 1 = 729 ⇔ n - 1 = 6 ⇔ n = 7  

Chọn: D

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    \({u_9} = {u_1}.{q^{9 - 1}} = \left( { - 5} \right){.2^8} =  - 1280\)

b)    Ta có: \( - 320 = \left( { - 5} \right){.2^{n - 1}} \Leftrightarrow {2^{n - 1}} = 64 \Leftrightarrow n = 7\)

 \( - 320\) là số hạng thứ 7 của cấp số nhân

c)    Ta có: \(160 = \left( { - 5} \right){.2^{n - 1}} \Leftrightarrow {2^{n - 1}} =  - {2^5}\)

 160 không là số hạng của cấp số nhân

18 tháng 9 2017

a )   u 1   =   3 ,   q   =   2     b )   n   =   10     c )   n   =   13

21 tháng 7 2019

Chọn đáp án D

u 4 = u 1 . q 3 = 48

20 tháng 11 2017

Kí hiệu u1,u2,u3,u4,u5 là các số hạng của cấp số nhân

Ta có :

Đáp án C

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Cấp số nhân có \({u_1} = 1,\;\;q = \;4\)

Số hạng tổng quát: \({u_n} = {4^{n - 1}}\)

Số hạng thứ 5: \({u_5} = {4^{5 - 1}} = 256\)

Số hạng thứ 100: \({u_{100}} = {4^{100 - 1}} =  {4^{99}}\).

b) Cấp số nhân có \({u_1} = 2,\;q =  - \frac{1}{4}\)

Số hạng tổng quát: \({u_n} = 2 \times {\left( { - \frac{1}{4}} \right)^{n - 1}}\)

Số hạng thứ 5: \({u_5} = 2 \times {\left( { - \frac{1}{4}} \right)^{5 - 1}} = \frac{1}{{128}}\)

Số hạng thứ 100: \({u_{100}} = 2 \times {\left( { - \frac{1}{4}} \right)^{100 - 1}} = \frac{ -1}{{2^{197}}}\)

9 tháng 5 2018

Phương pháp:

Số hạng tổng quát của CSN : u n = u 1 . q n - 1  

Cách giải:

Ta có: u 1 = 2 ,   q = 3

 

Chọn D

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Nếu cấp số nhân có công bội q = 1 thì cấp số nhân là \(u_1, u_1, ..., u_1,...\) Khi đó

\({S_n} = u_1 + u_1 + ... + u_1 = n . u_1\) (tổng của n số hạng u_1).

NV
27 tháng 1 2021

\(u_2=u_1+d=-2+d\) ; \(v_2=v_1q=-2q\)

\(u_2=v_2\Rightarrow-2+d=-2q\Rightarrow d=2-2q\)

\(u_3=v_3+8\Leftrightarrow-2+2d=-2q^2+8\)

\(\Leftrightarrow-2+2\left(2-2q\right)=-2q^2+8\)

\(\Leftrightarrow2q^2-4q-6=0\Rightarrow\left[{}\begin{matrix}q=-1\Rightarrow d=4\\q=3\Rightarrow d=-4\end{matrix}\right.\)