K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 4 2021

\(sina+cosa=\sqrt{2}\left(\dfrac{\sqrt{2}}{2}sina+\dfrac{\sqrt{2}}{2}cosa\right)\)

\(=\left[{}\begin{matrix}\sqrt{2}\left(sina.cos\dfrac{\pi}{4}+cosa.sin\dfrac{\pi}{4}\right)\\\sqrt{2}\left(sina.sin\dfrac{\pi}{4}+cosa.cos\dfrac{\pi}{4}\right)\end{matrix}\right.\)

\(=\left[{}\begin{matrix}\sqrt{2}sin\left(a+\dfrac{\pi}{4}\right)\\\sqrt{2}cos\left(a-\dfrac{\pi}{4}\right)\end{matrix}\right.\)

5 tháng 5 2018

phần chứng minh biểu thức không phụ thuộc \(x\)

ta có : \(A=\dfrac{cot^2a-cos^2a}{cot^2a}+\dfrac{sinacosa}{cota}=\dfrac{cot^2a-cos^2a}{cot^2a}+\dfrac{cos^2a}{cot^2a}\)

\(=\dfrac{cot^2a-cos^2a+cos^2a}{cot^2a}=\dfrac{cot^2a}{cot^2a}=1\left(đpcm\right)\)

ý còn lại : xem lại đề nha bn

phần chứng minh đẳng thức

ta có : \(\dfrac{sin2a-2sina}{sin2a+2sina}+tan^2\dfrac{a}{2}=\dfrac{2sinacosa-2sina}{2sinacosa+2sina}+tan^2\dfrac{a}{2}\)

\(=\dfrac{2sina\left(cosa-1\right)}{2sina\left(cosa+1\right)}+tan^2\dfrac{a}{2}=\dfrac{cosa-1}{cosa+1}+tan^2\dfrac{a}{2}\)

\(=\dfrac{1-2sin^2\dfrac{a}{2}-1}{2cos^2\dfrac{a}{2}-1+1}+tan^2\dfrac{a}{2}=\dfrac{-2sin^2\dfrac{a}{2}}{2cos^2\dfrac{a}{2}}+tan^2\dfrac{a}{2}\)

\(=-tan^2\dfrac{a}{2}+tan^2\dfrac{a}{2}=0\left(đpcm\right)\)

ta có : \(\dfrac{sina}{1+cosa}+\dfrac{1+cosa}{sina}=\dfrac{sin^2a+\left(1+cosa\right)^2}{sina\left(1+cosa\right)}\)

\(=\dfrac{sin^2a+cos^2a+2cosa+1}{sina\left(1+cosa\right)}=\dfrac{2cosa+2}{sina\left(cosa+1\right)}\)

\(=\dfrac{2\left(cosa+1\right)}{sina\left(cosa+1\right)}=\dfrac{2}{sina}\left(đpcm\right)\)

còn 2 câu kia để chừng nào rảnh mk giải cho nha

11 tháng 5 2018

mk lm 2 câu còn lại nha

ta có : \(\dfrac{sin^2x}{sinx-cosx}-\dfrac{sinx+cosx}{tan^2x-1}=\dfrac{\left(1-cos^2x\right)\left(tan^2x-1\right)-\left(sin^2x-cos^2x\right)}{\left(sinx-cosx\right)\left(tan^2x-1\right)}\)

\(=\dfrac{tan^2x-sin^2x-sin^2x-sin^2x+cos^2x}{\left(sinx-cosx\right)\left(tan^2x-1\right)}=\dfrac{\dfrac{sin^4x}{cos^2x}-sin^2x-sin^2x+cos^2x}{\left(sinx-cosx\right)\left(tan^2-1\right)}\)

\(=\dfrac{tan^2x\left(sin^2x-cos^2x\right)-\left(sin^2x-cos^2x\right)}{\left(sinx-cosx\right)\left(tan^2x-1\right)}=\dfrac{\left(tan^2x-1\right)\left(sin^2x-cos^2x\right)}{\left(sinx-cosx\right)\left(tan^2x-1\right)}\)

\(=sinx+cosx\left(đpcm\right)\)

ta có : \(\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{1-tan^2a.cot^2b}=\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{1-\dfrac{sin^2a.cos^2b}{cos^2a.sin^2b}}\)

\(=\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{\dfrac{cos^2a.sin^2b-sin^2a.cos^2b}{cos^2a.sin^2b}}=\dfrac{sin\left(a+b\right)sin\left(a-b\right).cos^2a.sin^2b}{-\left(sin^2a.cos^2b-cos^2a.sin^2b\right)}\)

\(=\dfrac{sin\left(a+b\right)sin\left(a-b\right).cos^2a.sin^2b}{-\left(\left(sina.cosb-cosa.sinb\right)\left(sina.cosb+cosa.sinb\right)\right)}\)

\(=\dfrac{sin\left(a+b\right)sin\left(a-b\right).cos^2a.sin^2b}{-sin\left(a-b\right)sin\left(a+b\right)}=-cos^2a.sin^2b\left(đpcm\right)\)

mk lm hơi tắc ! do tối rồi , mà mk lại đang ở quán nek nên không tiện làm dài . bạn thông cảm

30 tháng 3 2017

Hỏi đáp Toán

NV
12 tháng 6 2019

Câu 4:

Đặt \(x=sina+cosa>0\Rightarrow x^2=\left(sina+cosa\right)^2\)

\(\Rightarrow x^2=sin^2a+cos^2a+2sina.cosa=1+2.\frac{12}{25}=\frac{49}{25}\)

\(\Rightarrow x=\sqrt{\frac{49}{25}}=\frac{7}{5}\)

\(\Rightarrow P=\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)\)

\(P=\frac{7}{5}\left(1-\frac{12}{25}\right)=\frac{91}{125}\)

Câu 5:

\(sina+cosa=m\Rightarrow\left(sina+cosa\right)^2=m^2\)

\(\Leftrightarrow sin^2a+cos^2a+2sina.cosa=m^2\)

\(\Leftrightarrow1+2sina.cosa=m^2\)

\(\Rightarrow2sina.cosa=m^2-1\)

\(P=\left|sina-cosa\right|\ge0\)

\(\Leftrightarrow P^2=\left(sina-cosa\right)^2=sin^2a+cos^2a-2sina.cosa\)

\(\Leftrightarrow P^2=1-2sina.cosa=1-\left(m^2-1\right)=2-m^2\)

\(\Rightarrow P=\sqrt{2-m^2}\)

NV
12 tháng 6 2019

Câu 1:

Do \(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\)

\(sin\left(\pi+a\right)=-sina\Rightarrow-sina=-\frac{1}{3}\Rightarrow sina=\frac{1}{3}\)

\(\Rightarrow cosa=-\sqrt{1-sin^2a}=\frac{-2\sqrt{2}}{3}\)

\(P=tan\left(\frac{7\pi}{2}-a\right)=tan\left(3\pi+\frac{\pi}{2}-a\right)=tan\left(\frac{\pi}{2}-a\right)=cota\)

\(\Rightarrow P=\frac{cosa}{sina}=-2\sqrt{2}\)

Câu 2:

\(tan\left(a+\frac{\pi}{4}\right)=\frac{tana+tan\frac{\pi}{4}}{1-tana.tan\frac{\pi}{4}}=\frac{tana+1}{1-tana}\)

\(\Rightarrow\frac{tana+1}{1-tana}=1\Rightarrow tana+1=1-tana\Rightarrow tana=0\)

\(\Rightarrow\frac{sina}{cosa}=0\Rightarrow sina=0\)

Do \(\frac{\pi}{2}< a< 2\pi\Rightarrow-1\le cosa< 1\)

\(cos^2a=1-sin^2a=1-0=1\Rightarrow\left[{}\begin{matrix}cosa=-1\\cosa=1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow P=cos\left(a-\frac{\pi}{6}\right)+sina=cosa.cos\frac{\pi}{6}+sina.sin\frac{\pi}{6}+sina\)

\(P=-1.\frac{\sqrt{3}}{2}+0.\frac{1}{3}+0=-\frac{\sqrt{3}}{2}\)

26 tháng 4 2017

Giải bài 3 trang 154 SGK Đại Số 10 | Giải toán lớp 10

23 tháng 3 2018

rút gọn biểu thức:

E=cos(\(\dfrac{3\pi}{3}-\alpha\))-sin(\(\dfrac{3\pi}{2}-\alpha\))+sin(\(\alpha+4\pi\))

1 tháng 4 2017

Giải bài 9 trang 161 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 9 trang 161 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 9 trang 161 SGK Đại Số 10 | Giải toán lớp 10

20 tháng 11 2022

\(tana=\sqrt{3}\)

nên \(\dfrac{sina}{cosa}=\sqrt{3}\)

=>\(sina=\sqrt{3}\cdot cosa\)

=>a=60 độ

\(A=\dfrac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina\cdot cosa\right)}{sina-cosa}\)

\(=1+sina\cdot cosa=1+\dfrac{1}{2}sin2a\)

\(=1+\dfrac{1}{2}\cdot sin120=\dfrac{4+\sqrt{3}}{4}\)

30 tháng 3 2017

undefined

30 tháng 3 2017

Làm hay thế :))