Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phần chứng minh biểu thức không phụ thuộc \(x\)
ta có : \(A=\dfrac{cot^2a-cos^2a}{cot^2a}+\dfrac{sinacosa}{cota}=\dfrac{cot^2a-cos^2a}{cot^2a}+\dfrac{cos^2a}{cot^2a}\)
\(=\dfrac{cot^2a-cos^2a+cos^2a}{cot^2a}=\dfrac{cot^2a}{cot^2a}=1\left(đpcm\right)\)
ý còn lại : xem lại đề nha bn
phần chứng minh đẳng thức
ta có : \(\dfrac{sin2a-2sina}{sin2a+2sina}+tan^2\dfrac{a}{2}=\dfrac{2sinacosa-2sina}{2sinacosa+2sina}+tan^2\dfrac{a}{2}\)
\(=\dfrac{2sina\left(cosa-1\right)}{2sina\left(cosa+1\right)}+tan^2\dfrac{a}{2}=\dfrac{cosa-1}{cosa+1}+tan^2\dfrac{a}{2}\)
\(=\dfrac{1-2sin^2\dfrac{a}{2}-1}{2cos^2\dfrac{a}{2}-1+1}+tan^2\dfrac{a}{2}=\dfrac{-2sin^2\dfrac{a}{2}}{2cos^2\dfrac{a}{2}}+tan^2\dfrac{a}{2}\)
\(=-tan^2\dfrac{a}{2}+tan^2\dfrac{a}{2}=0\left(đpcm\right)\)
ta có : \(\dfrac{sina}{1+cosa}+\dfrac{1+cosa}{sina}=\dfrac{sin^2a+\left(1+cosa\right)^2}{sina\left(1+cosa\right)}\)
\(=\dfrac{sin^2a+cos^2a+2cosa+1}{sina\left(1+cosa\right)}=\dfrac{2cosa+2}{sina\left(cosa+1\right)}\)
\(=\dfrac{2\left(cosa+1\right)}{sina\left(cosa+1\right)}=\dfrac{2}{sina}\left(đpcm\right)\)
còn 2 câu kia để chừng nào rảnh mk giải cho nha
mk lm 2 câu còn lại nha
ta có : \(\dfrac{sin^2x}{sinx-cosx}-\dfrac{sinx+cosx}{tan^2x-1}=\dfrac{\left(1-cos^2x\right)\left(tan^2x-1\right)-\left(sin^2x-cos^2x\right)}{\left(sinx-cosx\right)\left(tan^2x-1\right)}\)
\(=\dfrac{tan^2x-sin^2x-sin^2x-sin^2x+cos^2x}{\left(sinx-cosx\right)\left(tan^2x-1\right)}=\dfrac{\dfrac{sin^4x}{cos^2x}-sin^2x-sin^2x+cos^2x}{\left(sinx-cosx\right)\left(tan^2-1\right)}\)
\(=\dfrac{tan^2x\left(sin^2x-cos^2x\right)-\left(sin^2x-cos^2x\right)}{\left(sinx-cosx\right)\left(tan^2x-1\right)}=\dfrac{\left(tan^2x-1\right)\left(sin^2x-cos^2x\right)}{\left(sinx-cosx\right)\left(tan^2x-1\right)}\)
\(=sinx+cosx\left(đpcm\right)\)
ta có : \(\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{1-tan^2a.cot^2b}=\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{1-\dfrac{sin^2a.cos^2b}{cos^2a.sin^2b}}\)
\(=\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{\dfrac{cos^2a.sin^2b-sin^2a.cos^2b}{cos^2a.sin^2b}}=\dfrac{sin\left(a+b\right)sin\left(a-b\right).cos^2a.sin^2b}{-\left(sin^2a.cos^2b-cos^2a.sin^2b\right)}\)
\(=\dfrac{sin\left(a+b\right)sin\left(a-b\right).cos^2a.sin^2b}{-\left(\left(sina.cosb-cosa.sinb\right)\left(sina.cosb+cosa.sinb\right)\right)}\)
\(=\dfrac{sin\left(a+b\right)sin\left(a-b\right).cos^2a.sin^2b}{-sin\left(a-b\right)sin\left(a+b\right)}=-cos^2a.sin^2b\left(đpcm\right)\)
mk lm hơi tắc ! do tối rồi , mà mk lại đang ở quán nek nên không tiện làm dài . bạn thông cảm
Câu 4:
Đặt \(x=sina+cosa>0\Rightarrow x^2=\left(sina+cosa\right)^2\)
\(\Rightarrow x^2=sin^2a+cos^2a+2sina.cosa=1+2.\frac{12}{25}=\frac{49}{25}\)
\(\Rightarrow x=\sqrt{\frac{49}{25}}=\frac{7}{5}\)
\(\Rightarrow P=\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)\)
\(P=\frac{7}{5}\left(1-\frac{12}{25}\right)=\frac{91}{125}\)
Câu 5:
\(sina+cosa=m\Rightarrow\left(sina+cosa\right)^2=m^2\)
\(\Leftrightarrow sin^2a+cos^2a+2sina.cosa=m^2\)
\(\Leftrightarrow1+2sina.cosa=m^2\)
\(\Rightarrow2sina.cosa=m^2-1\)
\(P=\left|sina-cosa\right|\ge0\)
\(\Leftrightarrow P^2=\left(sina-cosa\right)^2=sin^2a+cos^2a-2sina.cosa\)
\(\Leftrightarrow P^2=1-2sina.cosa=1-\left(m^2-1\right)=2-m^2\)
\(\Rightarrow P=\sqrt{2-m^2}\)
Câu 1:
Do \(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\)
\(sin\left(\pi+a\right)=-sina\Rightarrow-sina=-\frac{1}{3}\Rightarrow sina=\frac{1}{3}\)
\(\Rightarrow cosa=-\sqrt{1-sin^2a}=\frac{-2\sqrt{2}}{3}\)
\(P=tan\left(\frac{7\pi}{2}-a\right)=tan\left(3\pi+\frac{\pi}{2}-a\right)=tan\left(\frac{\pi}{2}-a\right)=cota\)
\(\Rightarrow P=\frac{cosa}{sina}=-2\sqrt{2}\)
Câu 2:
\(tan\left(a+\frac{\pi}{4}\right)=\frac{tana+tan\frac{\pi}{4}}{1-tana.tan\frac{\pi}{4}}=\frac{tana+1}{1-tana}\)
\(\Rightarrow\frac{tana+1}{1-tana}=1\Rightarrow tana+1=1-tana\Rightarrow tana=0\)
\(\Rightarrow\frac{sina}{cosa}=0\Rightarrow sina=0\)
Do \(\frac{\pi}{2}< a< 2\pi\Rightarrow-1\le cosa< 1\)
\(cos^2a=1-sin^2a=1-0=1\Rightarrow\left[{}\begin{matrix}cosa=-1\\cosa=1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow P=cos\left(a-\frac{\pi}{6}\right)+sina=cosa.cos\frac{\pi}{6}+sina.sin\frac{\pi}{6}+sina\)
\(P=-1.\frac{\sqrt{3}}{2}+0.\frac{1}{3}+0=-\frac{\sqrt{3}}{2}\)
rút gọn biểu thức:
E=cos(\(\dfrac{3\pi}{3}-\alpha\))-sin(\(\dfrac{3\pi}{2}-\alpha\))+sin(\(\alpha+4\pi\))
\(tana=\sqrt{3}\)
nên \(\dfrac{sina}{cosa}=\sqrt{3}\)
=>\(sina=\sqrt{3}\cdot cosa\)
=>a=60 độ
\(A=\dfrac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina\cdot cosa\right)}{sina-cosa}\)
\(=1+sina\cdot cosa=1+\dfrac{1}{2}sin2a\)
\(=1+\dfrac{1}{2}\cdot sin120=\dfrac{4+\sqrt{3}}{4}\)
\(sina+cosa=\sqrt{2}\left(\dfrac{\sqrt{2}}{2}sina+\dfrac{\sqrt{2}}{2}cosa\right)\)
\(=\left[{}\begin{matrix}\sqrt{2}\left(sina.cos\dfrac{\pi}{4}+cosa.sin\dfrac{\pi}{4}\right)\\\sqrt{2}\left(sina.sin\dfrac{\pi}{4}+cosa.cos\dfrac{\pi}{4}\right)\end{matrix}\right.\)
\(=\left[{}\begin{matrix}\sqrt{2}sin\left(a+\dfrac{\pi}{4}\right)\\\sqrt{2}cos\left(a-\dfrac{\pi}{4}\right)\end{matrix}\right.\)