K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 4 2019

Đề sai, nói mấy lần rồi bạn ko tin nhỉ? Bạn cho thử a một góc nào đó rồi bấm xem vế trái và vế phải có bằng nhau không?

24 tháng 4 2019

À mình không biết , cái này là đề thi hk mấy năm trước của trường mình , giải mãi chẳng ra , mấy lần trước mình không thấy ai trả lời hết . Cảm ơn bạn !

NV
7 tháng 6 2020

\(A=\frac{\left(1+cos2x\right)}{cos2x}.tanx=\frac{\left(1+2cos^2x-1\right)}{cos2x}.\frac{sinx}{cosx}=\frac{2cos^2x.sinx}{cos2x.cosx}=\frac{2sinx.cosx}{cos2x}=\frac{sin2x}{cos2x}=tan2x\)

\(B=\frac{1+2sin2a.cos2a-1+2sin^22a}{1+2sin2a.cos2a+2cos^22a-1}=\frac{2sin2a\left(sin2a+cos2a\right)}{2cos2a\left(sin2a+cos2a\right)}=\frac{sin2a}{cos2a}=tan2a\)

\(C=\frac{2sina.cosa+sina}{1+2cos^2a-1+cosa}=\frac{sina\left(2cosa+1\right)}{cosa\left(2cosa+1\right)}=\frac{sina}{cosa}=tana\)

\(VT=\dfrac{1+\cos^2a-\sin^2a+2\cdot\sin a\cdot\cos a}{1+2\cdot\sin a\cdot\cos a-\cos^2a+\sin^2a}\)

\(=\dfrac{2\cdot\cos^2a+2\cdot\sin a\cdot\cos a}{2\cdot\sin^2a+2\cdot\sin a\cdot\cos a}\)

\(=\dfrac{2\cdot\cos a\left(\cos a+\sin a\right)}{2\cdot\sin a\cdot\left(\sin a+\cos a\right)}\)

\(=\dfrac{\cos a}{\sin a}=\cot a\)

NV
14 tháng 6 2020

\(1+4\left(cosa+cos3a\right)+6cos2a+2cos^22a-1\)

\(=8cos2a.cosa+6cos2a+2cos^22a\)

\(=2cos2a\left(cos2a+4cosa+3\right)\)

\(=2cos2a\left(2cos^2a+4cosa+2\right)\)

\(=4cos2a\left(\left(2cos^2\frac{a}{2}-1\right)^2+2\left(2cos^2\frac{a}{2}-1\right)+1\right)\)

\(=4cos2a\left(4cos^4\frac{a}{2}-4cos^2\frac{a}{2}+1+4cos^2\frac{a}{2}-2+1\right)\)

\(=16cos2a.cos^4\frac{a}{2}\)

9 tháng 9 2020

Giải:

\(VP=\frac{sina+sin2a}{1+cosa+cos2a}=\frac{sina+2sinacosa}{1+cosa+2cos^2a-1}=\frac{sina\left(1+2cosa\right)}{cosa\left(1+2cosa\right)}=\frac{sina}{cosa}=tana=VT\)

=> ĐPCM

NV
4 tháng 6 2020

\(\frac{cos7a+cos3x-2cos5a}{sin6x-sin4a}=2m\Leftrightarrow\frac{2cos5a.cos2a-2cos5a}{2cos5a.sina}=2m\)

\(\Leftrightarrow\frac{2cos5a\left(cos2a-1\right)}{2cos5a.sina}=2m\Leftrightarrow\frac{cos2a-1}{sina}=2m\)

\(\Leftrightarrow\frac{-2sin^2a}{sina}=2m\Leftrightarrow sina=-m\)

\(\Rightarrow cos2a=1-2sin^2a=1-2m^2\)

NV
7 tháng 6 2020

\(A=\frac{1-sinx-1+2sin^2x}{2sinx.cosx-cosx}=\frac{sinx\left(2sinx-1\right)}{cosx\left(2sinx-1\right)}=\frac{sinx}{cosx}=tanx\)

\(B=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)

\(C=\frac{sina.cosa\left(tana-cota\right)}{sina.cosa\left(tana+cota\right)}+cos2a=\frac{sin^2a-cos^2a}{sin^2a+cos^2a}+cos2a\)

\(=-cos2a+cos2a=0\)

NV
25 tháng 5 2020

\(A=2sin2x.cos2x.cos4x=sin4x.cos4x=\frac{1}{2}sin8x\)

\(B=sin^4x+cos^6x-6sin^2x.cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-8sin^2x.cos^2x\)

\(=1-2\left(2sinx.cosx\right)^2=1-2sin^22x=cos4x\)

\(C=\frac{cos2a+1-2cos^22a}{2sin2a.cos2a+sin2a}=\frac{\left(1-cos2a\right)\left(2cos2a+1\right)}{sin2a\left(2cos2a+1\right)}=\frac{1-cos2a}{sin2a}\)

\(=\frac{1-\left(1-2sin^2a\right)}{2sina.cosa}=\frac{2sin^2a}{2sina.cosa}=\frac{sina}{cosa}=tana\)

\(D=\frac{2cos3a.cos2a+cos3a}{2sin3a.cos2a+sin3a}=\frac{cos3a\left(2cos2a+1\right)}{sin3a\left(2cos2a+1\right)}=\frac{cos3a}{sin3a}=cot3a\)

\(E=\frac{1}{2}-\frac{1}{2}cos\left(\frac{\pi}{4}+x\right)-\frac{1}{2}+\frac{1}{2}cos\left(\frac{\pi}{4}+x\right)\)

\(=\frac{1}{2}\left[cos\left(\frac{\pi}{4}+x\right)-cos\left(\frac{\pi}{4}-x\right)\right]=-sin\frac{\pi}{4}.sinx=-\frac{\sqrt{2}}{2}sinx\)

NV
14 tháng 6 2020

\(\frac{1-2sin2a+cos2a}{1+2sin2a+cos2a}=\frac{1-4sina.cosa+2cos^2a-1}{1+4sina.cosa+2cos^2a-1}=\frac{2cosa\left(cosa-2sina\right)}{2cosa\left(cosa+2sina\right)}\)

\(=\frac{cosa-2sina}{cosa+2sina}\)

Bạn coi lại đề, muốn ra được biểu thức vế phải thì trước sin2a không được có số 2