Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow sin^3x-sin^2x.cosx+3\left(sin^2x.cosx-cos^3x\right)=0\)
\(\Leftrightarrow sin^2x\left(sinx-cosx\right)+\left(sinx-cosx\right)\left(3sinx.cosx+3cos^2x\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sin^2x+3sinx.cosx+3cos^2x\right)=0\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\left[\left(sinx+\frac{3}{2}cosx\right)^2+\frac{3}{4}cos^2x\right]=0\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\)
\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
\(a\text{) }sin^3x+cos^3x=sinx+cosx\\ \Leftrightarrow\left(sinx+cosx\right)\left(sin^2x-sinx\cdot cosx+cos^2x\right)=sinx+cosx\\ \Leftrightarrow-\frac{1}{2}sin2x\left(sinx+cosx\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}sinx=-cosx=sin\left(x-\frac{\pi}{2}\right)\\sin2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3\pi}{2}-x+a2\pi\\2x=b\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\frac{3\pi}{4}+a\pi\\x=\frac{b\pi}{2}\end{matrix}\right.\)
\(\text{b) }sin^3x+2sin^2x\cdot cosx-3cos^3x=0\\ \Leftrightarrow\left(sin^3x-cos^3x\right)+2cosx\cdot\left(sin^2x-cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(sinx\cdot cosx+1\right)+\left(sinx-cosx\right)\left(2sinx\cdot cosx+2cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(3sinx\cdot cosx+1+2cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(\frac{3}{2}sin2x+2+cos2x\right)=0\)
Với \(sinx-cosx=0\)
\(\Leftrightarrow sinx=cosx=sin\left(\frac{\pi}{2}-x\right)\\ \Leftrightarrow x=\frac{\pi}{2}-x+a2\pi\\ \Leftrightarrow x=\frac{\pi}{4}+a\pi\)
Với \(\frac{3}{2}sin2x+2+cos2x=0\)
\(\Leftrightarrow sin^22x+\left(\frac{3}{2}sin2x+2\right)^2=1\left(VN\right)\)
\(\text{c) }3cos^4x-4cos^2x\cdot sin^2x-sin^4x=0\)
Nhận thấy sinx=0 không là nghiệm pt.
Chia cả 2 vế cho sin4x ta được
\(pt\Leftrightarrow\frac{3cos^4x}{sin^4x}-\frac{4cos^2x}{sin^2x}-1=0\\ \Leftrightarrow3cot^4x-4cot^2x-1=0\\ \Leftrightarrow cot^2x=\frac{2+\sqrt{7}}{3}\\ \Leftrightarrow cotx=\pm\sqrt{\frac{2+\sqrt{7}}{3}}\\ \Leftrightarrow x=arccot\left(\pm\sqrt{\frac{2+\sqrt{7}}{3}}\right)+k2\pi\)
d) kiểm tra đề.
c/
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=1+cos\left(\frac{\pi}{2}-2x\right)\)
\(\Leftrightarrow1-3sin^2x.cos^2x=1+sin2x\)
\(\Leftrightarrow-\frac{3}{4}sin^22x=sin2x\)
\(\Leftrightarrow3sin^22x+4sin2x=0\)
\(\Leftrightarrow sin2x\left(3sin2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sin2x=-\frac{4}{3}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\frac{k\pi}{2}\)
a/
\(\Leftrightarrow cos2x=sin3x\)
\(\Leftrightarrow cos2x=cos\left(\frac{\pi}{2}-3x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-3x+k2\pi\\2x=3x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{10}+\frac{k2\pi}{5}\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow\left(sinx-1\right)\left(2sinx+1\right)\left(sin^2x-2sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{1}{2}\\sinx=1-\sqrt{2}\end{matrix}\right.\) \(\Leftrightarrow x=...\)
\(\dfrac{2sin^3x+2\sqrt{3}sin^2x.cosx-2sin^2x+cos\left(2x+\dfrac{\pi}{3}\right)}{2cosx-\sqrt{3}}=0\)
d/
\(\Leftrightarrow2\left(sinx-cosx\right)\left(1+sinx.cosx\right)=\sqrt{3}cos2x\left(sinx-cosx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\2\left(1+sinx.cosx\right)=\sqrt{3}cos2x\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\)
\(\Leftrightarrow x-\frac{\pi}{4}=k\pi\Rightarrow x=\frac{\pi}{4}+k\pi\)
\(\left(2\right)\Leftrightarrow2+2sinx.cosx=\sqrt{3}cos2x\)
\(\Leftrightarrow2+sin2x=\sqrt{3}cos2x\)
\(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x=-1\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=-1\)
\(\Leftrightarrow2x-\frac{\pi}{3}=-\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=-\frac{\pi}{12}+k\pi\)
c/
\(\Leftrightarrow sinx-sin^2x=cosx-cos^2x\)
\(\Leftrightarrow sinx-cosx-\left(sin^2x-cos^2x\right)=0\)
\(\Leftrightarrow sinx-cosx-\left(sinx-cosx\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(1-sinx-cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\1-sinx-cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\\1-\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
Với \(cosx=0\) không phải nghiệm
Với \(cosx\ne0\) , chia 2 vế cho \(cos^3x\) ta được:
\(tan^3x-5tan^2x-3tanx+3=0\)
\(\Leftrightarrow\left(tanx+1\right)\left(tan^2x-6tanx+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=3-\sqrt{6}\\tanx=3+\sqrt{6}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(3-\sqrt{6}\right)+k\pi\\x=arctan\left(3+\sqrt{6}\right)+k\pi\end{matrix}\right.\)