Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-\dfrac{\pi}{2}+k2\pi\\x\ne\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\\\end{matrix}\right.\)
\(\dfrac{cosx-2sinx.cosx}{2cos^2x-1-sinx}=\sqrt{3}\)
\(\Leftrightarrow\dfrac{cosx-sin2x}{cos2x-sinx}=\sqrt{3}\)
\(\Rightarrow cosx-sin2x=\sqrt{3}cos2x-\sqrt{3}sinx\)
\(\Leftrightarrow cosx+\sqrt{3}sinx=\sqrt{3}cos2x+sin2x\)
\(\Leftrightarrow\dfrac{1}{2}cosx+\dfrac{\sqrt{3}}{2}sinx=\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{3}\right)=cos\left(2x-\dfrac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=x-\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{6}=\dfrac{\pi}{3}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\left(loại\right)\end{matrix}\right.\)
Vậy \(x=-\dfrac{\pi}{6}+k2\pi\)
Chọn C
Ta có: nên (1) và (2) có nghiệm.
Cách 1:
Xét: nên (3) vô nghiệm.
Cách 2:
Điều kiện có nghiệm của phương trình: sin x + cos x = 2 là:
(vô lý) nên (3) vô nghiệm.
Cách 3:
Vì
nên (3) vô nghiệm.
1)
Ta có \(P_1=\int \frac{\cos xdx}{2\sin x-7}=\int \frac{d(\sin x)}{3\sin x-7}\)
Đặt \(\sin x=t\Rightarrow P_1=\int \frac{dt}{3t-7}=\frac{1}{3}\int \frac{d(3t-7)}{3t-7}=\frac{1}{3}\ln |3t-7|+c\)
\(=\frac{1}{3}\ln |3\sin x-7|+c\)
2)
\(P_2=\int \sin xe^{2\cos x+3}dx\)
Đặt \(\cos x=t\)
\(P_2=-\int e^{2\cos x+3}d(\cos x)=-\int e^{2t+3}dt\)
\(=-\frac{1}{2}\int e^{2t+3}d(2t+3)=\frac{-1}{2}e^{2t+3}+c\)
\(=\frac{-e^{2\cos x+3}}{2}+c\)
3)
\(P_3=\int \frac{\sin x+x\cos x}{(x\sin x)^2}dx\)
Để ý rằng \((x\sin x)'=x'\sin x+x(\sin x)'=\sin x+x\cos x\)
Do đó: \(d(x\sin x)=(x\sin x)'dx=(\sin x+x\cos x)dx\)
Suy ra \(P_3=\int \frac{d(x\sin x)}{(x\sin x)^2}\)
Đặt \(x\sin x=t\Rightarrow P_3=\int \frac{dt}{t^2}=\frac{-1}{t}+c=\frac{-1}{x\sin x}+c\)
Thực hiện theo các bước sau :
Bước 1 : Biến đổi :
\(a_1\sin x+b_1\cos x=A\left(a_2\sin x+b_2\cos x\right)+B\left(a_2\cos x-b_2\sin x\right)\)
Bước 2 : Khi đó :
\(I=\int\frac{A\left(a_2\sin x+b_2\cos x\right)+B\left(a_2\cos x-b_2\sin x\right)}{\left(a_2\sin x+b_2\cos x\right)^2}dx=A\int\frac{dx}{a_2\cos x+b_2\sin x}+B\int\frac{\left(a_2\cos x+b_2\sin x\right)dx}{\left(a_2\cos x+b_2\sin x\right)^2}\)
\(=\frac{A}{\sqrt{a^2_2+b^2_2}}\int\frac{dx}{\sin\left(x+\alpha\right)}-B\int\frac{1}{a_2\sin x+b_2\cos x}dx=\frac{A}{\sqrt{a^2_2+b^2_2}}\ln\left|\tan\left(\frac{x+\alpha}{2}\right)\right|-\frac{B}{a_2\cos x+b_2\sin x}+C\)
Trong đó : \(\sin\alpha=\frac{b_2}{\sqrt{a^2_2+b^2_2}_{ }};\cos\alpha=\frac{a_2}{\sqrt{a^2_2+b^2_2}}\)
Ta thực hiện theo các bước sau :
Bước 1 : Biến đổi
\(a_1\sin^2x+b_1\sin x\cos x+c_1\cos^2x=\left(A\sin x+B\cos x\right)\left(a_2\sin x+b_2\cos x\right)+C\left(\sin^2x+\cos^2x\right)\)
Bước 2 : Khi đó :
\(I=\int\frac{\left(A\sin x+B\cos x\right)\left(a_2\sin x+b_2\cos x\right)+C\left(\sin^2x+\cos^2x\right)}{a_2\sin x+b_2\cos x}\)
\(=\int\left(A\sin x+B\cos x\right)+C\int\frac{dx}{a_2\sin x+b_2\cos x}\)
= \(-A\cos x+B\sin x+\sqrt{\frac{C}{a^2_a+b_2^2}}\int\frac{dx}{\sin\left(x+\alpha\right)}\)
=\(-A\cos x+B\sin x+\frac{C}{\sqrt{a_2^2+b^2_2}}\ln\left|\tan\frac{x+\alpha}{2}\right|+C\)
Trong đó :
\(\sin\alpha=\frac{b_2}{\sqrt{a_2^2}+b^{2_{ }}_2};\cos\alpha=\frac{a_2}{\sqrt{a_2^2}+b^{2_{ }}_2}\)
csc(-x) = -csc(x)
cos(-x) = cos(x)
sec(-x) = sec(x)
tan(-x) = -tan(x)
cot(-x) = -cot(x)
tan(x y) = (tan x tan y) / (1 tan x tan y)
sin(2x) = 2 sin x cos x
cos(2x) = cos^2(x) - sin^2(x) = 2 cos^2(x) - 1 = 1 - 2 sin^2(x)
tan(2x) = 2 tan(x) / (1 - tan^2(x))
sin^2(x) = 1/2 - 1/2 cos(2x)
cos^2(x) = 1/2 + 1/2 cos(2x)
sin x - sin y = 2 sin( (x - y)/2 ) cos( (x + y)/2 )
cos x - cos y = -2 sin( (x - y)/2 ) sin( (x + y)/2 )
a/sin(A) = b/sin(B) = c/sin(C) (Law of Sines)
b^2 = a^2 + c^2 - 2ac cos(B)
a^2 = b^2 + c^2 - 2bc cos(A)
(a - b)/(a + b) = tan [(A-B)/2] / tan [(A+B)/2] (Law of Tangents)