K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2016

Xét tử số:

 \(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)  

                                                                                 \(=\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{10}{49.51}\)

                                                                                   \(=\frac{100}{\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}}\)

Vậy

      \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}}\)

\(=\frac{100}{\frac{\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}}{\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}}}=100\)

28 tháng 5 2017

a) Đặt B = \(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)

\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)

\(=\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{49.51}\)

\(=100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\right)\)

Đặt C = \(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\)

\(=\left(\frac{1}{1.99}+\frac{1}{99.1}\right)+\left(\frac{1}{3.97}+\frac{1}{97.3}\right)+...+\left(\frac{1}{49.51}+\frac{1}{51.49}\right)\)

\(=2\cdot\frac{1}{1.99}+2\cdot\frac{1}{3.97}+...+2\cdot\frac{1}{49.51}\)

\(=2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)\)

Thay B và C vào A 

\(\Rightarrow A=\frac{100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}{2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}=\frac{100}{2}=50\)

b) Đặt E = \(\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}\)

\(=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)

\(=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\)

\(=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)

Thay E vào B

\(\Rightarrow B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}=\frac{1}{100}\)

28 tháng 5 2017

a)50

b)1/100

tk ủng hộ nha

AH
Akai Haruma
Giáo viên
12 tháng 10

Lời giải:

** Sửa đề: Chỗ $\frac{1}{1}$ ở mẫu chuyển thành $\frac{1}{2}$

$\frac{1}{1}.99+\frac{1}{3}.97+\frac{1}{5}.95+....+\frac{1}{97}.3+\frac{1}{99}.1$

$=50+(\frac{97}{3}+1)+(\frac{95}{5}+1)+....+(\frac{3}{97}+1)+(\frac{1}{99}+1)$

$=50+\frac{100}{3}+\frac{100}{5}+...+\frac{100}{97}+\frac{100}{99}$
$=100(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99})$

\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{100(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99})}=\frac{1}{100}\)

24 tháng 4 2016

2A = 2/3x5 + 2/5x7 + ... + 2/47x49 + 2/49x51

2A = 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/47 - 1/49 + 1/49 - 1/51

2A = 1/3 - 1/51

2A = 16/51

  A = 16/51 : 2 =8/51

24 tháng 4 2016

A = 1/2 . ( 1/3 -1/5 + 1/5-1/7 + ...+1/47 - 1/49 + 1/49 - 1/51)

A = 1/2 .(1/3 -1/51)

A=1/2 . 16/51

A= 8/51

26 tháng 9 2016

Ta xét riêng tử số:

\(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+......+\frac{1}{97}+\frac{1}{99}\)

\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+......+\left(\frac{1}{49}+\frac{1}{51}\right)\)

\(=\frac{100}{1\times99}+\frac{100}{3\times97}+\frac{100}{5\times95}+......+\frac{100}{49\times51}\)

\(=100\times\left(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{49\times51}\right)\)

Bây giờ xét đến mẫu số:

\(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{97\times3}+\frac{1}{99\times1}\)

\(=\frac{2}{1\times99}+\frac{2}{3\times97}+\frac{2}{5\times95}+......+\frac{2}{49\times51}\)

\(=2\times\left(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{49\times51}\right)\)

Vậy giá trị của biểu thức là: \(\frac{100}{2}=50\)

26 tháng 9 2016

thanks 

27 tháng 7 2015

OK. Tối nhớ giải hộ mik nha

Mik hứa sẽ lik-e cho bạn

 

26 tháng 2 2017

mình ko biết

3 tháng 2 2019

Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)

\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)

\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)

\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)

Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)

\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)

\(A=\frac{B}{6}=\frac{100}{2}=50\)

Vậy \(A=50\)

5 tháng 8 2018

\(x-\frac{37}{45}=\frac{4}{5.9}+\frac{4}{9.13}+.....+\frac{4}{41.45}\)

\(\Rightarrow x-\frac{37}{45}=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\)

\(\Rightarrow x-\frac{37}{45}=\frac{1}{5}-\frac{1}{45}\)

\(\Rightarrow x-\frac{37}{45}=\frac{8}{45}\)

\(\Rightarrow x=\frac{37}{45}+\frac{8}{45}\)

\(\Rightarrow x=1\)

3 tháng 2 2019

Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)

\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)

\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)

\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)

Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)

\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)

\(A=\frac{B}{6}=\frac{100}{2}=50\)

Vậy \(A=50\)