Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q= 3/3x5 + 3/5x7 + 3/7x9 +...+ 3/47x49
Q= (3/3 -3/5) + (3/5-3/7) + (3/7-3/9)+...+(3/47-3/49)
Q= 3/3 - 3/5 + 3/5 - 3/7 + 3/7 - 3/9 + ... + 3/47 - 3/49
Q=3/3 - 3/49
Q= 46/49
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2009.2011}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2009.2011}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2011}\right)=\frac{1}{2}.\frac{2008}{6033}=\frac{1004}{6033}\)
\(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+.....+\frac{1}{2009x2011}\)
\(=\frac{1.2}{3.5.2}+\frac{1.2}{5.7.2}+\frac{1.2}{7.9.2}+....+\frac{1.2}{2009.2011.2}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{2009.2011}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\frac{2008}{6033}=\frac{2008}{12066}\)
Tớ không chép lại đề nữa nhé:
=\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{2009.2011}\right)\)=\(\frac{1}{2}.\left(\frac{3-1}{1-3}+\frac{7-5}{5-7}+...+\frac{2011-2009}{2009-2011}\right)\)
= \(\frac{1}{2}.\left(\frac{3}{1.3}-\frac{1}{1.3}+\frac{5}{3.5}-\frac{3}{3.5}+...+\frac{2011}{2009.2011}-\frac{2009}{2009.2011}\right)\)
=\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2009}-\frac{1}{2011}\right)\)
=\(\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
=\(\frac{1}{2}.\frac{2010}{2011}\)
=\(\frac{1005}{2011}\)
Câu a
\(S=\frac{3-1}{1x3}+\frac{5-3}{3x5}+\frac{7-5}{5x7}+...+\frac{2019-2017}{2017x2019}.\)
\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}=1-\frac{1}{2019}=\frac{2018}{2019}\)
Câu b
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^6}+\frac{1}{3^7}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^5}+\frac{1}{3^6}\)
\(2A=3A-A=1-\frac{1}{3^7}\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^7}\)
Giải
Ta có A= [1+1/3.5] + [1+1/5.7] + [1+1/7.9] + ... + [1+1/37.39]
=>A= (1+1+1+...+1) +(1/3.5 + 1/5.7 + 1/7.9 + ... + 1/37.39)
=> A = 18 + 1/2.(2/3.5+2/5.7+2/7.9+...+2/37.39)
=>A = 18 + 1/2.(1/3-1/5+1/5-1/7+1/7-1/9+...+1/37-1/39)
=> A= 18 + 1/2.(1/3-1/39)
=> A= 18 + 1/2 . 4/13
=>A= 18 + 2/13 = 236/13
a) Ta có: \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}=1\text{-}\frac{1}{3}+\frac{1}{3}\text{-}\frac{1}{5}+...+\frac{1}{11}\text{-}\frac{1}{13}=1\text{-}\frac{1}{13}=\frac{12}{13}\)
Thay vào ta có:
\(\frac{12}{13}+x=\frac{24}{13}\Rightarrow x=\frac{24}{13}\text{-}\frac{12}{13}\Rightarrow x=\frac{12}{13}\)
\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{49\cdot51}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{51}=\frac{17}{51}-\frac{1}{51}=\frac{16}{51}\)
\(B=5\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{100}-\frac{1}{103}\right)\)
\(\Rightarrow B=5\cdot\left(1-\frac{1}{103}\right)=5\cdot\frac{102}{103}=\frac{510}{103}\)
\(C=5\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}\right)\)
\(\Rightarrow C=5\cdot\left(1-\frac{1}{101}\right)=5\cdot\frac{100}{101}=\frac{500}{101}\)
\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
\(B=\frac{5}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(B=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{5}{3}\left(1-\frac{1}{103}\right)\)
\(B=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)
\(C=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(C=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(C=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(C=\frac{5}{2}\left(1-\frac{1}{101}\right)\)
\(C=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)
\(C=\frac{3}{4}x\frac{8}{9}x\frac{15}{16}x...x\frac{9999}{10000}\)
\(C=\frac{3}{4}x\frac{4x2}{3x3}x\frac{3x5}{2x8}x...x\frac{99x101}{100x100}\)
\(C=...\) ( Tự làm tiếp )
\(E=1\frac{1}{3}x1\frac{1}{8}x1\frac{1}{15}x1\frac{1}{24}x...x1\frac{1}{99}\)
\(E=\frac{4}{3}x\frac{9}{8}x\frac{16}{15}x\frac{25}{24}x...x\frac{100}{99}\)
\(E=....\)( tương tự câu C )
2A = 2/3x5 + 2/5x7 + ... + 2/47x49 + 2/49x51
2A = 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/47 - 1/49 + 1/49 - 1/51
2A = 1/3 - 1/51
2A = 16/51
A = 16/51 : 2 =8/51
A = 1/2 . ( 1/3 -1/5 + 1/5-1/7 + ...+1/47 - 1/49 + 1/49 - 1/51)
A = 1/2 .(1/3 -1/51)
A=1/2 . 16/51
A= 8/51