K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 11 2019

Hmm, đề bài vẫn chưa rõ ràng lắm, trong đội hình 442 kia, vị trí của 4 cầu thủ trong hàng hậu vệ là như nhau, hay phân biệt rõ ràng hậu vệ cánh trái, hậu vệ cánh phải và 2 trung vệ? Tương tự với hàng tiền vệ, có tiền vệ trụ, tiền vệ kiến thiết, tiền vệ công, hộ công v...v...

Cứ coi như các cầu thủ ở 3 tuyến là như nhau

Không gian mẫu: \(C_3^1.C_8^4.C_6^4.C_6^2\)

Số cách chọn đội hình thỏa mãn yêu cầu: \(C_7^3.C_4^2.C_5^1\)

Xác suất: \(P=\frac{1}{45}\)

11 tháng 11 2019

Hay lắm,

thanks

23 tháng 12 2018

Đáp án: D.

Số phần tử của không gian mẫu là: .

Gọi A là biến cố: “đội tuyển U21 HA.GL và U21 Thái Lan nằm ở hai bảng khác nhau”. Số kết quả thuận lợi cho biến cố A là:

Vậy xác suất cần tính là

.

13 tháng 10 2017

Đáp án B

Gọi A là biến cố “Cú sút đó không vào lưới”. Nếu cầu thủ sút vào vị trí 1 hoặc 2, xác suất để bóng không vào bằng  2 . 1 4 . 1 4 = 1 8 . Nếu cầu thủ sút cào vị trí 3 hoặc 4, xác suất để bóng không vào bằng  2 . 1 4 . 1 4 . 1 2 = 1 16 . Suy ra xác suất để bóng không vào bằng  P ( A ) = 1 8 + 1 16 = 3 16 .

NV
25 tháng 1

Gọi \(A_i\) là biến cố cầu thủ sút vào vị trí \(i\) và \(B_i\) là biến cố thủ môn bay người tới vị trí \(i\)

Do 4 vị trí như nhau nên \(P\left(A_i\right)=P\left(B_i\right)=\dfrac{1}{4}\) với mọi i từ 1 tới 4

Xác suất cầu thủ ko sút vào là:

\(P=P\left(A_1\right).P\left(B_1\right)+P\left(A_2\right).P\left(B_2\right)+\dfrac{1}{2}P\left(A_3\right).P\left(B_3\right)+\dfrac{1}{2}P\left(A_4\right).P\left(B_4\right)\)

\(=\dfrac{1}{4}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{4}+\dfrac{1}{2}.\dfrac{1}{4}.\dfrac{1}{4}+\dfrac{1}{2}\dfrac{1}{4}.\dfrac{1}{4}=\dfrac{3}{16}\)

5 tháng 11 2017

Chọn D

Gọi A là biến cố “3 đội của Việt Nam cùng nằm ở một bảng đấu”.

Ta có 

Chọn ra 3 đội của Việt Nam và 1 đội khác rồi xếp chung vào 1 trong 3 bảng có: 3. C 9 1  (cách).

Chọn ra 4 đội trong 8 đội còn lại để được bảng tiếp theo có: C 8 4  (cách).

Bảng còn lại có 1 cách chọn.

11 tháng 3 2019

Chọn A

Gọi ba bảng đấu có tên là A, B, C.

Chọn 4 đội cho bảng A có C 12 4  cách, chọn 4 đội cho bảng B có  C 8 4  cách và 4 đội còn lại vào bảng C có 1 cách. 

Theo quy tắc nhân, số cách chia 12 đội thành 3 bảng đấu là:  (cách)

Gọi A là biến cố “3 đội Việt Nam cùng nằm ở một bảng đấu.

Giả sử 3 đội Việt Nam cùng nằm ở bảng A.

Khi đó bảng A sẽ chọn 1 đội trong 9 đội nước ngoài và 3 đội Việt Nam, 8 đội còn lại chia vào bảng B và C. Trong trường hợp này ta có số cách chọn là

Vì vai trò của các bảng là như nhau nên trường hợp 3 đội Việt Nam ở bảng B hay bảng C đều cho kết quả như nhau.

Vậy số kết quả thuận lợi cho biến cố A là 

Xác suất của biến cố A là : 

7 tháng 2 2017

Chọn C

Không gian mẫu Ω :” Chia 12 đội thành 3 bảng mỗi bảng 4 đội”

.

Gọi biến cố A:” 3 đội Việt Nam ở 3 bảng đấu khác nhau”.

+ Có 3! cách xếp 3 đội Việt Nam vào 3 bảng đấu.

+ Có C 9 3 C 6 3  cách xếp 9 đội nước ngoài vào 3 bảng đấu.

. Vậy xác suất cần tìm là .

30 tháng 6 2017

Chọn D

Nhận định bài toán:

1) Đây là dạng bài toán phân chia một tập hợp ra thành các nhóm có số lượng bằng nhau.

2) Phương pháp:

Dạng bài toán này được phân chia làm 2 loại đó là:

-    Các nhóm có thứ tự A, B, C, D…

-    Các nhóm không phân biệt thứ tự.

Nếu không phân biệt rõ ràng 2 bài toán này thì rất dễ dẫn đến nhầm lẫn và sai kết quả.

Ví dụ: Có bao nhiêu cách chia 20 người thành 4 nhóm, mỗi nhóm có 5 người trong các trường hợp sau:

a) Các nhóm được đánh tên theo thứ tự A, B, C, D.

b) Không phân biệt thứ tự nhóm.

Lời giải

a) Số cách chọn 5 người cho nhóm A là C 20 5 . Ứng với mỗi cách chọn trên, ta có số cách chọn 5 người cho nhóm B là  C 15 5 , nhóm C là C 10 5 và 5 người còn lại vào nhóm D.

Theo quy tắc nhân, ta được số cách chia nhóm là:  (cách).

b) Vì các nhóm không phân biệt thứ tự nên khi ta hoán vị 4 nhóm trên sẽ cho cùng một kết quả. Do đó số cách chia trong trường hợp này là

3) Phân tích bài toán và lời giải.

Chia 8 đội thành hai bảng đấu, do đó hai bảng đấu này sẽ có thứ tự rõ ràng cho nên bài toán của chúng ta thuộc loại chia nhóm có thứ tự.

Gọi hai bảng đấu là bảng A và bảng B.

Chọn 4 đội vào bảng A ta có C 8 4  cách, bốn đội còn lại vào bảng B có 1 cách.

Theo quy tắc nhân, ta có số cách chia 8 đội vào hai bảng đấu là:

Gọi A là biến cố “Hai đội Việt Nam nằm ở hai bảng khác nhau”.

Bảng A: Có 3 đội nước ngoài và 1 đội Việt Nam. Số cách chọn là C 6 3 . C 2 1 .

Bảng B: Chỉ còn 1 cách chọn duy nhất cho 3 đội nước ngoài và 1 đội Việt Nam còn lại vào bảng B.

 

Do đó số cách chia 8 đội thành 2 bảng mỗi bảng có 1 đội Việt Nam là : n(A) =  C 6 3 . C 2 1 .1 = 40 cách

Vậy xác suất của biến cố A là: