Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sắp xếp theo thứ tự tăng dần: \(-\frac{7}{9};-\frac{7}{5};0;-\frac{4}{-5};\frac{9}{11};\frac{3}{2}\)
\(A=\dfrac{2}{3}+\dfrac{3}{4}\cdot\dfrac{-4}{9}=\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}=\dfrac{100}{300}\)
\(B=\dfrac{25}{11}\cdot\dfrac{13}{12}\cdot\dfrac{-11}{5}=\dfrac{-65}{12}=\dfrac{-1625}{300}\)
\(C=\left(\dfrac{3}{4}-\dfrac{1}{5}\right)\cdot\left(\dfrac{2}{5}-\dfrac{4}{5}\right)=\dfrac{11}{20}\cdot\dfrac{-2}{5}=\dfrac{-22}{100}=\dfrac{-11}{50}=\dfrac{-66}{300}\)
Vì -1625<-66<100
nên B<C<A
Số hữu tỉ dương: \(\frac{-3}{-5};\frac{2}{3}\)
Số hữu tỉ âm: \(\frac{-3}{7};\frac{1}{-5}\)
Số không phải là số hữu tỉ âm mà cũng không phải là số hữu tỉ âm: \(\frac{0}{-2}\)
\(-\frac{9}{11}< \frac{7}{a}< -\frac{9}{13}\Leftrightarrow\frac{7}{-\frac{7\cdot11}{9}}< \frac{7}{a}< \frac{7}{-\frac{7\cdot13}{9}}\)
\(\Leftrightarrow\frac{7}{-8,\left(5\right)}< \frac{7}{a}< \frac{7}{-10,\left(1\right)}\)
a nguyên nên có thể bằng -8;-9;-10.
Kết luận: có 3 số hữu tỷ có dạng 7/a lớn hơn -9/11 và nhỏ hơn -9/13.
a: \(\dfrac{7}{5}>\dfrac{7}{9}\)
=>\(-\dfrac{7}{5}< -\dfrac{7}{9}\)
\(\dfrac{3}{2}=1,5;\dfrac{4}{5}=0,8;\dfrac{9}{11}=0,\left(9\right);-\dfrac{3}{-4}=0,75\)
mà 0<0,75<0,8<0,(9)<1,5
nên \(0< \dfrac{3}{4}< \dfrac{4}{5}< \dfrac{9}{11}< \dfrac{3}{2}\)
=>\(-\dfrac{7}{5}< -\dfrac{7}{9}< 0< \dfrac{-3}{-4}< \dfrac{4}{5}< \dfrac{9}{11}< \dfrac{3}{2}\)
b: \(-\dfrac{11}{12}=-1+\dfrac{1}{12};\dfrac{-3}{4}=-1+\dfrac{1}{4};\dfrac{-18}{19}=-1+\dfrac{1}{19};\dfrac{-4}{5}=-1+\dfrac{1}{5};-\dfrac{25}{26}=-1+\dfrac{1}{26}\)
=>
Vì 4<5<12<19<26
nên \(\dfrac{1}{4}>\dfrac{1}{5}>\dfrac{1}{12}>\dfrac{1}{19}>\dfrac{1}{26}\)
=>\(\dfrac{1}{4}-1>\dfrac{1}{5}-1>\dfrac{1}{12}-1>\dfrac{1}{19}-1>\dfrac{1}{26}-1\)
=>\(\dfrac{-3}{4}>-\dfrac{4}{5}>\dfrac{-11}{12}>\dfrac{-18}{19}>\dfrac{-25}{26}\)
=>
\(\dfrac{-25}{26}< \dfrac{-18}{19}< \dfrac{-11}{12}< \dfrac{-4}{5}< -\dfrac{3}{4}\)
mà \(\dfrac{-3}{4}< 0< \dfrac{-4}{-5}\)
nên \(-\dfrac{25}{26}< -\dfrac{18}{19}< \dfrac{-11}{12}< -\dfrac{4}{5}< -\dfrac{3}{4}< \dfrac{-4}{-5}\)