Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: A=(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
=(3^4-1)(3^4+1)(3^8+1)(3^16+1)
=(3^8-1)(3^8+1)(3^16+1)
=(3^16-1)(3^16+1)
=3^32-1
2: B=(1-3^2)(1+3^2)*...*(1+3^16)
=(1-3^4)(1+3^4)(1+3^8)(1+3^16)
=1-3^32
1
\(A=8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^{16}-1\right)\left(3^{16}+1\right)\\ =3^{32}-1\)
\(B=\left(1-3\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(1-3^2\right)\left(1+3^2\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(1-3^4\right)\left(1+3^4\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(1-3^8\right)\left(1+3^8\right)\left(3^{16}+1\right)\\ =\left(1-3^{16}\right)\left(1+3^{16}\right)=1-3^{32}\)
a) \(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
\(=\left(a^2+\left(-b\right)^2+c^2-2ab+2ac-2bc\right)-\left(b^2-2bc+c^2\right)+2ab-2ac\)
\(=a^2+b^2+c^2-2ab+2ac-2bc-b^2+2bc-c^2+2ab-2ac\)
\(=a^2+b^2-b^2+c^2-c^2-2ab+2ab+2ac-2ac-2bc+2bc\)
\(=a^2\)
Nếu đề thế này thì mình có thể làm được:
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=3^{32}-1\)
\(\Rightarrow A=\dfrac{3^{32}-1}{2}\)
=> B>A
Baì này mình mới làm lúc sáng bạn vào câu hỏi tương tự có đấy
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{2}< 3^{32}-1=C\)
Ta có: B=\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Leftrightarrow\) 2B= \(2.\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
= \(\left(3-1\right).\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
= \(\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
= \(\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
= \(\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
= \(\left(3^{16}-1\right)\left(3^{16}+1\right)\)
= \(3^{32}-1\)
\(\Rightarrow\) B= \(\dfrac{3^{32}-1}{2}\)
Mà ta có A= \(3^{32}-1\)
\(\Rightarrow\) A=2B
Lời giải :
\(\left(3-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{4}\cdot\left(3+1\right)\left(3-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{4}\cdot\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{4}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{4}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{4}\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{4}\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(=\frac{3^{64}-1}{4}\)
[Toán 8] Rút gọn $ (3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)$ | HOCMAI Forum - Cộng đồng học sinh Việt Nam
Ta có: \(A=3^{32}-1=\left(3^{16}+1\right)\left(3^{16}-1\right)\)
\(=\left(3^{16}+1\right)\left(3^8+1\right)\left(3^8-1\right)\)
\(=\left(3^{16}+1\right)\left(3^8+1\right)\left(3^4+1\right)\left(3^4-1\right)\)
\(=\left(3^{16}+1\right)\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3^2-1\right)\)
\(=\left(3^{16}+1\right)\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3+1\right)\left(3-1\right)\)
\(=2.\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
Vậy A = 2B
Áp dụng HĐT đáng nhớ :
\(\left(a-b\right)\left(a+b\right)=a^2-b^2\) . Ta có :
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^{32}-1\right)\left(3^{32}+1\right)=3^{64}-1\)
\(\Rightarrow A=\frac{3^{64}-1}{2}\)
Chúc bạn học tốt !!!
A*2=(3-1)*(3+1)*(3^2+1)*....*(3^16+1)
A*2=(3^2-1)*(3^2+1)*(3^4+1)....*(3^16+1)
A*2=((3^4)^2-1^2)*(3^4+1)......*(3*16+1)
2*A=(3^8-1)*...(3^16+1)
bạn lm tiếp nha
nhân vào A 3^2-1