Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 2^1 + 2^2 + 2^3 +...+ 2^100
S = (2^1 + 2^2 +2^3 + 2^4) + ... + (2^97 + 2^98 + 2^99 + 2^100)
S = 2(1 + 2 + 2^2 + 2^3 ) + ...+ 2^97( 1 + 2 + 2^2 + 2^3)
S = 2x15 +...+ 2^97x15
S = 15( 2...2^97) chia hết cho 15
Do 15 chia hết cho 3 mà S chia hết cho 15
=> S chia hết cho 3
Vậy s chia hết cho 3 và 15
\(S=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{99^2}+\frac{1}{100^2}\)
Ta có:
\(\frac{1}{3^2}=\frac{1}{9}< \frac{1}{6}=\frac{1}{2.3}\)
\(\frac{1}{4^2}=\frac{1}{16}< \frac{1}{12}=\frac{1}{3.4}\)
Tương tự đến hết thì:
\(\frac{1}{100^2}=\frac{1}{10000}< \frac{1}{9900}=\frac{1}{99.100}\)
=> \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
=>\(S< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
=>\(S< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
=> \(S< \frac{1}{2}\)
nhận xét
\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2\cdot3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}=\frac{1}{4\cdot4}< \frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4}\)
...........................................
\(\frac{1}{99^2}=\frac{1}{99\cdot99}< \frac{1}{98\cdot99}=\frac{1}{98}-\frac{1}{99}\)
\(\frac{1}{100^2}=\frac{1}{100\cdot100}< \frac{1}{99\cdot100}=\frac{1}{99}-\frac{1}{100}\)
ta có
S=\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
S=\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
=>S<\(\frac{1}{2}\)
Vậy S<\(\frac{1}{2}\)
S=1/20+(1/21+1/22-1)+(1/22+...+1/23-1)+...+(1/299+...+1/2100-1) (100 cặp)
S<1/20.20+1/21.21+1/22.22+...+1/299.299
S<1+1+1+...+1 (100 số 1)
S<100.1
S<100 (ĐPCM)