K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2018

Ta có: S = SABH + SBCKH + SCKD

                 = 1212.AH.BH + BH.HK + 1212CK.KD

                  = 1212.7x + x.x + 1212x.4

                  = 7272x + x2 + 2x 

Vậy S = 20 ta có hai phương trình:

                   x(11+2x)2x(11+2x)2 = 20                     (1)

                   7272x + x2 + 2x  = 20                  (2)

Cả hai phương trình không có phương trình nào là phương trình bậc nhất.

12 tháng 9 2017

1) Ta có: S = BH x (BC + DA) : 2

+ BCKH là hình chữ nhật nên BC = KH = x

+ BH = x

+ AD = AH + HK + KD = 7 + x + 4 = 11 + x.

Vậy S = BH x (BC + DA) : 2 = x.(x + 11 + x) : 2 = x.(2x + 11) : 2.

2) S = SABH + SBCKH + SCKD

+ ABH là tam giác vuông tại H

⇒ SBAH = 1/2.BH.AH = 1/2.7.x = 7x/2.

+ BCKH là hình chữ nhật

⇒ SBCKH = x.x = x2.

+ CKD là tam giác vuông tại K

⇒ SCKD = 1/2.CK.KD = 1/2.4.x = 2x.

Do đó: S = SABH + SBCKH + SCKD = 7x/2 + x2 + 2x = x2 + 11x/2.

- Với S = 20 ta có phương trình:

Giải bài 6 trang 9 SGK Toán 8 Tập 2 | Giải toán lớp 8

Hai phương trình trên tương đương với nhau. Và cả hai phương trình trên đều không phải là phương trình bậc nhất.

Hướng dẫn giải:

Gọi S là diện tích hình thang ABCD.

1) Theo công thức

S = BH(BC+DA)2

Ta có: AD = AH + HK + KD

=> AD = 7 + x + 4 = 11 + x

Do đó: S = x(11+2x)2

2) Ta có: S = SABH + SBCKH + SCKD.

= 12.AH.BH + BH.HK + 12CK.KD

= 12.7x + x.x + 12x.4

= 72x + x2 + 2x

Vậy S = 20 ta có hai phương trình:

x(11+2x)2 = 20 (1)

72x + x2 + 2x = 20 (2)

Cả hai phương trình không có phương trình nào là phương trình bậc nhất.

2 tháng 1 2019

a) theo cách tính thứ nhất, diện tích hình thang là :

SABCD= BH.(BC+AD):2= x(x+7+x+4):2

=x(2x+11):2 = \(\dfrac{1}{2}\)x(2x+11) (đvdt) (1)

b) theo cách tính thứ hai

SABCD=SAHB+SCKD= \(\dfrac{1}{2}\).7x+x2+\(\dfrac{1}{2}\).4x

=\(\dfrac{7x+2x^2+4x}{2}\)= \(\dfrac{2x^2+11x}{2}\) (đvdt) (2)

Với S = 20 thì (1) và (2) trở thành x2+5,5x =20 thì đây là một phương trình bậc hai (vì có x2).

Vậy trong hai phương trình trên không có phương trình nào là phương trình bậc nhất.

25 tháng 3 2017

a)     Phương trình bậc nhất một ẩn là phương trình  2x -8 = 0

b)    Hai phương trình tương đương là hai phương trình có cùng tập nghiệm

Hai PT đã cho tương đương với nhau vì chúng có cùng tập nghiệm

S = {-2/3}

 

25 tháng 3 2017

a) Phương trình bậc nhất một ẩn là phương trình :

         2x - 8 = 0

b) Hai phương trình tương đương với nhau vì chúng có cùng tập nghiệm

Hai PT đã cho tương đương với nhau vì chúng có cùng tập nghiệm

        S = ( -2 / 3 )

ai tk mk mk tk lại!!

1: Hai phương trình gọi là tương đương khi chúng có chung tập nghiệm

2: Phương trình bậc nhất một ẩn là phương trình có dạng ax+b=0(a<>0), với a,b là các số thực

1: Hai phương trình gọi là tương đương khi chúng có chung tập nghiệm

2: Phương trình bậc nhất một ẩn là phương trình có dạng ax+b=0(a<>0), với a,b là các số thực

7 tháng 3 2022

Tham Khao :

1. 

a. Định nghĩa: Hai phương trình gọi là tương đương nếu chúng có cùng một tập hợp nghiệm.

 

[CHUẨN NHẤT] Thế nào là hai phương trình tương đương

 

 

b. Hai quy tắc biến đổi tương đương các phương trình: 

[CHUẨN NHẤT] Thế nào là hai phương trình tương đương (ảnh 2)

3 tháng 3 2022

a, Để phương trình (1) là phương trình bậc nhất một ẩn thì  \(m-1\ne0\Leftrightarrow m\ne1\)

\(b,2x+5=3\left(x+2\right)-1\\ \Leftrightarrow2x+5=3x+6-1\\ \Leftrightarrow2x+5=3x+5\\ \Leftrightarrow x=0\)

b,Để pt trên là pt tương đương thì pt(1) có nghiệm x=0, thay x=0 vào pt(1) ta có:
\(2\left(m-1\right)x+3=2m-5\\ \Leftrightarrow2\left(m-1\right).3+3=2m-5\\ \Leftrightarrow2m-5=3\\ \Leftrightarrow2m=8\\ \Leftrightarrow m=4\)

a: Để (1) là phươg trình bậc nhất 1 ẩn thì (m-1)<>0

hay m<>1

b: Ta có: 2x+5=3(x+2)-1

=>2x+5=3x+6-1

=>3x+5=2x+5

=>x=0

Thay x=0 vào (1), ta được:

2m-5=3

hay m=4

NV
6 tháng 2 2021

a.

(1) là pt bậc nhất 1 ẩn khi và chỉ khi \(2\left(m-1\right)\ne0\Leftrightarrow m\ne1\)

b.

Ta có: \(2x+5=3\left(x+2\right)-1\)

\(\Leftrightarrow2x+5=3x+5\)

\(\Leftrightarrow x=0\)

Do đó (1) tương đương (*) khi (1) nhận \(x=0\) là nghiệm

\(\Rightarrow2\left(m-1\right).0+3=2m-5\)

\(\Rightarrow m=4\)

22 tháng 3 2022

a, Để pt trên là pt bậc nhất 1 ẩn thì: \(m-1\ne0\Leftrightarrow m\ne1\)

 \(b,2x+5=3\left(x+2\right)-1\\ \Leftrightarrow2x+5=3x+6-1\\ \Leftrightarrow2x+5=3x+5\\ \Leftrightarrow x=0\)

Để pt (1) tương đương vs pt trên thì

\(2\left(m-1\right).0+3=2m-5\\ \Leftrightarrow2m-5=3\\ \Leftrightarrow2m=8\\ \Leftrightarrow m=4\)

12 tháng 3 2022

a, để pt trên là pt bậc nhất khi m khác 2 

b, Ta có \(2x+5=x+7-1\Leftrightarrow x=1\)

Thay x = 1 vào pt (1) ta được 

\(2\left(m-2\right)+3=m-5\Leftrightarrow2m-1=m-5\Leftrightarrow m=-4\)