K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2022

Ta có:
1/2^2 > 1/2.3
1/3^2 > 1/3.4
...
1/10^2 > 1/10.11
-> Cộng dọc theo vế ta có:
1/2^2+1/3^2+...+1/10^2 > 1/2.3+1/3.4+...+1/10.11
                                         = 1/2-1/3+1/3-1/4+...+1/10-1/11 

                                         = 1/2 - 1/11 = 9/22  (đpcm)         

14 tháng 5 2022

 

\(S=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)

Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(A< \dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{50-49}{49.50}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A< 1-\dfrac{1}{50}\Rightarrow A< 1\)

Ta có \(S=\dfrac{1}{2^2}\left(1+A\right)\)

Ta có

\(A< 1\Rightarrow1+A< 2\Rightarrow S< \dfrac{1}{2^2}.2=\dfrac{1}{2}\)

11 tháng 5 2022

ơi

11 tháng 5 2022

18 tháng 5 2017

a)Ta có:\(\dfrac{1}{b}-\dfrac{1}{b+1}=\dfrac{b+1-b}{b\left(b+1\right)}=\dfrac{1}{b^2+b}< \dfrac{1}{b^2}\)(do b>1)

\(\dfrac{1}{b-1}-\dfrac{1}{b}=\dfrac{b-b+1}{\left(b-1\right)b}=\dfrac{1}{b^2-b}>\dfrac{1}{b^2}\)(do b>1)

b)Áp dụng từ câu a

=>\(\dfrac{1}{2}-\dfrac{1}{3}< \dfrac{1}{2^2}< \dfrac{1}{1}-\dfrac{1}{2}\)

\(\dfrac{1}{3}-\dfrac{1}{4}< \dfrac{1}{3^2}< \dfrac{1}{2}-\dfrac{1}{3}\)

.........................

\(\dfrac{1}{9}-\dfrac{1}{10}< \dfrac{1}{9^2}< \dfrac{1}{8}-\dfrac{1}{9}\)

=>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}< S< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

=>\(\dfrac{1}{2}-\dfrac{1}{10}< S< 1-\dfrac{1}{9}\)

=>\(\dfrac{2}{5}< S< \dfrac{8}{9}\)(đpcm)

18 tháng 5 2017

thanks bn nhìu

Ta có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{2^2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)\(=\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{9}=\dfrac{23}{36}< \dfrac{32}{36}=\dfrac{8}{9}\). (1)

Ta lại có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2^2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{10}=\dfrac{19}{20}>\dfrac{8}{20}=\dfrac{2}{5}\). (2)

Từ (1) và (2) suy ra đpcm.

1 tháng 4 2022

Hay quá

 

20 tháng 5 2017

Đặt A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

A=\(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}\)

Ta thấy :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\)

\(\dfrac{1}{100.100}< \dfrac{1}{99.100}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

Nhân xét :

\(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};\)

\(...;\dfrac{1}{99.100}=\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}+...+\)

\(\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A< 1-\dfrac{1}{100}\)

\(\Rightarrow A< \dfrac{99}{100}\)

\(A< \dfrac{99}{100}< 1\)

\(\Rightarrow A< 1\)

20 tháng 5 2017

Bài 1)

Đặt \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\)
Ta thấy:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4};....;\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{99.100}\)\(\Rightarrow\) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{99.100}\)
\(\Rightarrow\) A < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+......+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow\) A < \(1-\dfrac{1}{100}\) < 1 \(\Rightarrow\) A < 1

Vậy \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\)< 1

16 tháng 4 2023

=> 4S = 1 + 2/4 + 3/4^2 +...+ 2023/4^2022

=> 4S-S = 1 + (2/4-1/4) + (3/4^2 - 2/4^2) +...+ (2023/4^2022 - 2022/4^2022) - 2023/4^2023

=> 3S = 1 + 1/4 + 1/4^2 +...+ 1/4^2022 - 2023/4^2023

=> 12S = 4 + 1 + 1/4 +... + 1/4^2021 - 2023/4^2022

=> 12S - 3S = 4 + (1-1) + (1/4-1/4) +... + (1/4^2021 - 1/4^2021)  - 1/4^2022 - 2023/4^2022 + 2023/4^2023

=> 9S = 4 -  1/4^2022 - 2023/4^2022 + 2023/4^2023

= 4- 2024/4^2022 + 2023/4^2023

Do 2024/4^2022 > 2024/4^2023 > 2023/4^2023 nên - 2024/4^2022 + 2023/4^2023 < 0

=> 9S < 4 < 9/2

=> S < 1/2 (đpcm)

30 tháng 8 2023

Cho S=1+3+3^2+....+3^2023

Chứng tỏ S chia hết cho 4

16 tháng 4 2023

Ta có S = \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2023}{4^{2023}}\)

4S = \(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2023}{4^{2022}}\)

4S - S = ( \(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2023}{4^{2022}}\) ) - ( \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2023}{4^{2023}}\))

3S = 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}-\dfrac{2023}{4^{2023}}\)

Đặt A = 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}\)

4A = 4 + 1 + \(\dfrac{1}{4}+...+\dfrac{1}{4^{2021}}\)

4A - A = ( 4 + 1 + \(\dfrac{1}{4}+...+\dfrac{1}{4^{2021}}\)) - ( 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}\))

3A = 4 - \(\dfrac{1}{4^{2022}}\)

A = ( 4 - \(\dfrac{1}{4^{2022}}\)) : 3 = \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\)

⇒ 3S = \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\) - \(\dfrac{2023}{4^{2023}}\)

S = ( \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\) - \(\dfrac{2023}{4^{2023}}\)) : 3 = \(\dfrac{4}{9}-\dfrac{1}{4^{2022}\cdot3^2}-\dfrac{1}{4^{2023}\cdot3}< \dfrac{4}{9}< \dfrac{1}{2}\)

Vậy S < \(\dfrac{1}{2}\)

\(S=\dfrac{1}{2^2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)

=>\(S< =\dfrac{1}{4}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)

=>\(S< =\dfrac{1}{4}\cdot\left(1-\dfrac{1}{n}\right)=\dfrac{1}{4}\cdot\dfrac{n-1}{n}< =\dfrac{1}{4}\)