K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2015

thiếu                  

13 tháng 7 2015

\(S=\left(1.2\right)^2+\left(2.2\right)^2+\left(3.2\right)^2+...+\left(10.2\right)^2\)

\(S=1^2.2^2+2^2.2^2+3^2.2^2+...+10^2.2^2\)

\(S=2^2\left(1^2+2^2+3^2+...+10^2\right)\)

TA BIẾT 

\(1^2+2^2+3^2+...+10^2=385\)( SÁCH GIÁO KHOA TOÁN LỚP 7 TRANG 25 )

NÊN 

\(S=2^2.385=4.385=1540\)

 

11 tháng 3 2021

Ta có \(2^2+4^2+...+20^2=2^2\left(1^2+2^2+...+10^2\right)=2^2.385=1540\).

16 tháng 7 2018

S = 22 + 42 + 62 + ... + 202

   = (2.1)2 + (2.2)2 + (2.3)2 ... (2.10)2

   = 22.12 + 22.22 + 22.32 + ... + 22.102

   = 22 (12 + 22 + ... + 102 )

   = 4 . 385 = 1540

16 tháng 9 2017

Ta có : \(1^2+2^2+3^2+.....+10^2=385\)

\(\Leftrightarrow2^2\left(1^2+2^2+3^2+.....+10^2\right)=2^2.385\)

\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=4.385\)

\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=1540\)

16 tháng 9 2017

Sửa đề: CHo 12+22+...+102=385. Tính S = 22+42 +...+ 202

S = 22 + 42 +...+ 202

= (1.2)2 + (2.2)2 +...+ (2.10)2

= 12.22 + 22.22 +...+ 22.102

= 22(12 + 22 +...+ 102)

= 4.385

= 1540

Chọn B

5 tháng 8 2023

2² + 4² + 6² + ... + 16² + 18²

= 4.(1 + 2² + 3² + ... + 8² + 9²)

= 4.285

= 1140

5 tháng 8 2023

= 285 nha mình ghi nhầm thành 385

 

a:

Số số hạng trong dãy M là:

(1002-12):10+1=100(số)

=>Sẽ có 50 cặp (1002;992); (982;972);....;(22;12) có hiệu bằng 10

\(M=1002-992+982-972+...+22-12\)

\(=\left(1002-992\right)+\left(982-972\right)+...+\left(22-12\right)\)

\(=10+10+...+10\)

=10*50=500

b: \(N=\left(202+182+...+42+22\right)-\left(192+172+...+32+12\right)\)

\(=\left(202-192\right)+\left(182-172\right)+...+\left(22-12\right)\)

=10+10+...+10

=10*10=100

AH
Akai Haruma
Giáo viên
30 tháng 12 2022

Lời giải:

Gọi vế trái là $A$

$2A=\frac{2}{2^2}+\frac{2}{4^2}+\frac{2}{6^2}+...+\frac{2}{2022^2}$

Xét số hạng tổng quát:

$\frac{2}{n^2}$. Ta sẽ cm $\frac{2}{n^2}< \frac{1}{(n-1)n}+\frac{1}{n(n+1)}(*)$

$\Leftrightarrow \frac{2}{n^2}< \frac{n+1+n-1}{n(n-1)(n+1)}$

$\Leftrightarrow \frac{2}{n^2}< \frac{2}{(n-1)(n+1)}$

$\Leftrightarrow \frac{2}{n^2}< \frac{2}{n^2-1}$ (luôn đúng)

Thay $n=2,4,...., 2022$ vào $(*)$ ta có:

$\frac{2}{2^2}< \frac{1}{1.2}+\frac{1}{2.3}$

$\frac{2}{4^2}< \frac{1}{3.4}+\frac{1}{4.5}$

.......

Suy ra: $2A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2022.2023}$

$2A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2022}-\frac{1}{2023}$

$2A< 1-\frac{1}{2023}< 1$

$\Rightarrow A< \frac{1}{2}$

11 tháng 6 2017

2 tháng 8 2021

A. 1155 nha bạn