Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo mình nghĩ là như th61 này
\(2\cdot2^{99}-2^{99}=2^{99}\)
\(2^{99}=2\cdot2^{98}\)
\(2\cdot2^{98}-2^{98}=2^{98}\)
vậy tức là \(2^n-2^{n-1}=2^{n-1}\)
đến cuối bạn sẽ có \(2^3-2^2=4\)
4-2-1=1
A=2(n-5)+11/n-5=2+11/n-5
để A là 1 số nguyên thì 11 chia hết cho n-5
hay n-5 thuộc ước của 11
n-5 thuộc 11;-11;1;-1
n thuộc 16;-6;6;4
kl:.....
Muốn A là số nguyên thì 2n + 1 chia hết cho n - 5
Suy ra 2n - 10 + 11 chia hết cho n - 5
Suy ra 2(n - 5) + 11 chia hết cho n - 5
Suy ra 11 chia hết cho n - 5
Suy ra n - 5 là ước của 11
Còn lại bạn làm nốt. Mình ngại làm lắm.
\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)
Có : A = 111...100...0 ( n chữ số 1 và n chữ số 0 ) + 111...1 ( n chữ số 1 ) + 222....2 ( n chữ số 2 )
Đặt 111....1 ( n chữ số 1 ) = a ( a thuộc N )
=> A = a.10^n+a-2a = a.10^n-a = a.(9a+1)-a = 9a^2+a-a = 9a^2 = (3a)^2 là 1 số chính phương
=> ĐPCM
(2x-2)2 = 16
(2x-2) = 4 vì 4 x 4 = 16
2x = 4 + 2
2x = 6
x = 6 : 2
x = 3
(2x - 2)2 = 16
=> (2x - 2)2 = 42 = (-4)2
=> \(2x-2\in\left\{4;-4\right\}\)
=> \(2x\in\left\{6;-2\right\}\)
=> \(x\in\left\{3;-1\right\}\)
Vậy \(x\in\left\{3;-1\right\}\)
10 + (2x - 1) 2 : 3 = 13
=> (2x - 1) 2 : 3 = 13 - 10
=> (2x - 1) 2 : 3 = 3
=> (2x - 1) 2 = 3 . 3
=> (2x - 1) 2 = 3 2
=> 2x - 1 = 3
=> 2x = 3 + 1
=> 2x = 4
=> x = 2
10 + (2x - 1)2 : 3 = 13
=> (2x - 1)2 : 3 = 13 - 10
=> (2x - 1 )2 : 3 = 3
=> (2x - 1)2 = 9
=> (2x - 1)2 = 32
=> 2x - 1 = 3
=> 2x = 4
=> x = 2
Vậy x = 2
Đây bạn
Viết lại bài toán cần chứng minh
13+23+33+..n3=(1+2+3+...+n)213+23+33+..n3=(1+2+3+...+n)2
Với n=1;n=2n=1;n=2 thì đẳng thức hiển nhiên đúng, hay chính là câu a,b đó
Giả sử đẳng thức đúng với n=kn=k
Tức 13+23+33+...k3=(1+2+3+4..+k)213+23+33+...k3=(1+2+3+4..+k)2
Ta sẽ chứng minh nó đúng với n=k+1n=k+1
Viết lại đẳng thức cần chứng minh 13+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)213+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)2 (*)
Mặt khác ta có công thức tính tổng sau 1+2+3+4+...+n=n(n+1)21+2+3+4+...+n=n(n+1)2
⇒(1+2+3+4+...+n)2=(n2+n)24⇒(1+2+3+4+...+n)2=(n2+n)24
Vậy viết lại đẳng thức cần chứng minh
(k2+k)24+(k+1)3=(k2+3k+2)24(k2+k)24+(k+1)3=(k2+3k+2)24
⇔(k2+3k+2)2−(k2+k)2=4(k+1)3⇔(k2+3k+2)2−(k2+k)2=4(k+1)3
Bằng biện pháp "nhân tung tóe", đẳng thức cần chứng minh tuơng đuơng
⇔4k3+12k2+12k+4=4(k+1)3⇔4k3+12k2+12k+4=4(k+1)3
⇔4(k+1)3=4(k+1)3⇔4(k+1)3=4(k+1)3 ~ Đẳng thức này đúng.
Vậy theo nguyên lý quy nạp ta có đpcm.
Giải hẳn hoi nha các bạn, đừng có viết luôn dạng tổng quát, nha