K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2016

S = 1+1/2.(1+2)+1/3.(1+2+3)+...+1/100.(1+2+3+...+100)

   = 1+1/3.(1+2+3)+1/5.(1+2+3+4+5)+...+1/99(1+2+3+...+99) +  1/2.(1+2)+1/4.(1+2+3+4)+...+1/100.(1+2+3+...+100)

   =  (1+2+3+...+50)+(3/2+5/2+7/2+...+101/2)

   =  1275+1300

   =       2575

15 tháng 4 2016

làm giùm bn í đi mọi người ........ mk cx k cho ......

6 tháng 3 2017

A=(2^101-1)/2^99-100/2^100

6 tháng 3 2017

bạn làm chi tiết hơn nhé

22 tháng 1 2016

S= 1^3+2^3+3^3+...+100^3                                                                                                                             S=1^2*1+2^2*2+3^2*3+...+100^2*100                                                                                                             S=(100*101*201)/6+5050                                                                                                                               S=5126002500

3 tháng 4 2017

k cho minh nha

10 tháng 4 2017

noichung ai k minh thi minh k cho

7 tháng 8 2017

- 62 nha bnavt828498_60by60.jpgConan Kudo

7 tháng 4 2016

mk bó tay sorry

456547

9 tháng 1 2021

Bạn nhìn thì cũng không quá khó để nhận ra quy luật trong S

\(\frac{1}{1},\)\(\frac{1+2}{2},\)\(\frac{1+2+3}{3},\)\(\frac{1+2+3+4}{4},\)..., \(\frac{1+2+...+100}{100},\)

Công thức tính tổng \(1+2+3+..+n\)(với \(n\)là số nguyên dương) là \(\frac{n\cdot\left(n+1\right)}{2}\)

Vì vậy mỗi số hạng trong \(S\)có thể rút gọn thành \(\frac{1+2+3+...+n}{n}=\frac{\frac{n\left(n+1\right)}{2}}{n}=\frac{n+1}{2}\)

Do đó

 \(S=\frac{\left(1+1\right)}{2}+\frac{\left(2+1\right)}{2}+\frac{\left(3+1\right)}{2}+..+\frac{\left(100+1\right)}{2}=\frac{1}{2}\left(2+3+4+..+101\right)\)

\(S=\frac{1}{2}\left(\frac{101\cdot102}{2}-1\right)=2575\)

Chúc bạn học tốt!
(P/S : giải thích dòng cuối : Tổng từ 2 tới 101? Lấy tổng từ 1 tới 101 rồi trừ đi 1 nếu không nhớ cách làm của Gauss nha, không thì cứ nhớ câu này "Dĩ đầu cộng vĩ, chiết bán nhân chi" (lấy đầu cộng cuối, chia 2, nhân số số hạng))

26 tháng 2 2016

số hạng của dãy số là:

(100 -1) :1 =100( số)

tổng của dãy số là:

(100+1) * 100 :2=5050

đáp số:5050

26 tháng 2 2016

Số số hạng của dãy số là :

(100-1):1+1=100 (số)

Tổng của dãy số là :

(100+1)*100:2=5050

Đáp số 5050

20 tháng 3 2016

S = 1 x 2 + 2 x 3 + ... + 99 x 100

3S = 1 x 2 x 3 + 2 x 3 x (4 - 1) + ..... + 99 x 100 x (101 - 98)

3S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + .... + 99 x 100 x 101 - 98 x 99 x 100

3S = 99 x 100 x 101 = 999900

S = 999900 : 3 = 333300