Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)
\(\Rightarrow3A=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)
\(\Rightarrow4A=3^{101}+1\)
\(\Rightarrow A=\dfrac{3^{101}+1}{4}\)
Vậy...
b, tương tự
Nhắc lại một chút :
Nếu hai đại lượng tỉ lệ nghịch với nhau thì :
- Tích hai giá trị tương ứng của chúng luôn không đổi ( = hệ số tỉ lệ )
- Tỉ số hai giá trị bất kì của đại lượng này = nghịch đảo của tỉ số hai giá trị tương ứng của đại lượng kia
Ta có x và y là hai đại lượng tỉ lệ nghịch
x1, x2 là hai giá trị của x
y1, y2 là hai giá trị của y
Tích hai giá trị tương ứng của chúng luôn không đổi
tức là x1y1 = x2y2 ; biết x1 = 6, x2 = -9
=> 6y1 = -9y2 => \(\frac{y_1}{\frac{1}{6}}=\frac{y_2}{-\frac{1}{9}}\)và y1 - y2 = 10
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y_1}{\frac{1}{6}}=\frac{y_2}{-\frac{1}{9}}=\frac{y_1-y_2}{\frac{1}{6}-\left(-\frac{1}{9}\right)}=\frac{10}{\frac{5}{18}}=36\)
\(\Rightarrow\hept{\begin{cases}y_1=36\cdot\frac{1}{6}=6\\y_2=36\cdot\left(-\frac{1}{9}\right)=-4\end{cases}}\)
1.\(45^{10}.5^{30}=45^{10}.125^{10}=\left(45.125\right)^{10}=5625^{10}\)
2.a. \(\left(2x-1\right)^3=-8\Leftrightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Leftrightarrow2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)
b.\(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{cases}}\)
c. \(\left(2x+3\right)^2=\frac{9}{121}\Leftrightarrow\orbr{\begin{cases}2x+3=\frac{3}{11}\\2x+3=-\frac{3}{11}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{15}{11}\\x=-\frac{18}{11}\end{cases}}\)
d.\(\left(3x-1\right)^3=-\frac{8}{27}=\left(-\frac{2}{3}\right)^3\)
\(\Leftrightarrow3x-1=-\frac{2}{3}\Leftrightarrow x=\frac{1}{9}\)
4.
a.\(99^{20}=\left(99^2\right)^{10}=9801^{10}\)
Do \(9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
b.\(3^{4000}=\left(3^2\right)^{2000}=9^{2000}\)
\(\Rightarrow3^{4000}=9^{2000}\)
c.\(2^{332}=\left(2^3\right)^{110}.2^2=8^{110}.4\)
\(3^{223}=\left(3^2\right)^{110}.3^3=\left(3^2\right)^{110}.9=9^{110}.9\)
Ta thấy \(4.8^{110}< 9.9^{110}\)
Vậy \(2^{332}< 3^{223}\)
b) Tính
\(A=\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}\)
\(=\frac{\left(2^4\right)^3.3^{10}+2^3.3.5.2^9.3^9}{\left(2^2\right)^6.3^{12}+2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}+2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3+1\right)}\)
\(=\frac{2.6}{3.7}=\frac{12}{21}=\frac{4}{7}\)
Vậy : \(A=\frac{4}{7}\)
a: \(=\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)^2+\left(-1\right)\)
\(=\left(1-1\right)+\left(1-1\right)+...+\left(1-1\right)\)
=0
b: \(=\left(-1\right)^{100}+\left(-1\right)^{99}+...+\left(-1\right)^2+\left(-1\right)\)
\(=\left(1-1\right)+...+\left(1-1\right)\)
=0
c: \(=1^{100}-1^{99}+1^{98}-1^{97}+...+1^2-1\)
=0
f: \(=3\cdot\sqrt{9-5}+7=3\cdot2+7=13\)