K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

xét \(\sqrt{\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}}=\sqrt{\frac{b^4\left(a^2+b^2\right)^2+a^4\left(a^2+b^2\right)^2+a^4b^4}{a^4b^4\left(a^2+b^2\right)^2}}=\sqrt{\frac{a^8+b^8+2a^2b^6+a^4b^4+a^4b^4+2a^6b^2+a^4b^4}{\left[a^2b^2\left(a^2+b^2\right)\right]^2}}\)=\(\sqrt{\frac{\left(a^4+b^4\right)^2+2a^2b^2\left(a^4+b^4\right)+a^4b^4}{\left[a^2b^2\left(a^2+b^2\right)\right]^2}}=\sqrt{\frac{\left(a^4+b^4+a^2b^2\right)^2}{\left[a^2b^2\left(a^2+b^2\right)\right]^2}}\)

1 tháng 7 2015

\(A=\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}=\frac{\left(a^4+b^4\right)\left(a^2+b^2\right)^2+a^4b^4}{a^4b^4\left(a^2+b^2\right)^2}\)

\(=\frac{\left(a^4+b^4\right)\left(a^4+b^4+2a^2b^2\right)+a^4b^4}{\left[a^2b^2\left(a^2+b^2\right)\right]^2}=\frac{\left(a^4+b^4\right)^2+2a^2b^2\left(a^4+b^4\right)+\left(a^2b^2\right)^2}{\left[a^2b^2\left(a^2+b^2\right)\right]^2}\)

\(=\frac{\left(a^4+b^4+a^2b^2\right)^2}{\left[a^2b^2\left(a^2+b^2\right)\right]^2}\)

\(\Rightarrow B=\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{A}\)\(=\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\frac{\left(a^2+b^2\right)^2-a^2b^2}{a^2b^2\left(a^2+b^2\right)}\)

\(=\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\frac{a^2+b^2}{a^2.b^2}-\frac{1}{a^2+b^2}\)

\(=\)\(\frac{\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2}{a^2b^2\left(a+b\right)^2}=\frac{\left(a^2+b^2\right)\left(a^2+b^2+2ab\right)+a^2b^2}{\left[ab\left(a+b\right)\right]^2}\)

\(=\frac{\left(a^2+b^2\right)^2+2\left(a^2+b^2\right).ab+\left(ab\right)^2}{\left[ab\left(a+b\right)\right]^2}\)

\(=\frac{\left(a^2+b^2+ab\right)^2}{\left[ab\left(a+b\right)\right]^2}=\left[\frac{a^2+b^2+ab}{ab\left(a+b\right)}\right]^2\)

\(\Rightarrow\sqrt{B}=\left|\frac{a^2+b^2+ab}{ab\left(a+b\right)}\right|=\frac{a^2+b^2+ab}{\left|ab\left(a+b\right)\right|}\)

 

 

11 tháng 8 2017

Bài 1: 

Ta có:

\(\left(a-b+c\right)^3=a^3-b^3+c^3-3a^2b+3a^2c+3ab^2+3b^2c+3ac^2-3bc^2-6abc\)

\(\Rightarrow\left(\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\right)^3=\frac{1}{9}-\frac{2}{9}+\frac{4}{9}-\frac{1}{3}.\sqrt[3]{2}+\frac{1}{3}.\sqrt[3]{4}+\frac{1}{3}.\sqrt[3]{4}+\frac{2}{3}.\sqrt[3]{2}\)

\(+\frac{2}{3}.\sqrt[3]{2}-\frac{2}{3}.\sqrt[3]{4}-\frac{4}{3}=\sqrt[3]{2}-1\)

\(\Rightarrow\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)

6 tháng 10 2018

Ai giải giúp mình bài 1 với bài 4 trước đi

28 tháng 5 2021

c,\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\)

\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}.\sqrt{1-a}}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}-1}{a}\right)\)

\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(1+a\right)-\left(1-a\right)}.\frac{\left(\sqrt{1-a^2}-1\right)}{a}=-1\)

28 tháng 5 2021

M chỉ làm tiếp thôi nha, ko chép lại đề với đk đâu

a,

\(=\frac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\)\(\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\frac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\sqrt{a}+\sqrt{b}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)

\(=0\)

b,

\(=\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}+1\right)\)

\(=\left(a-b\right)^2\left(\frac{a+b}{a-b}-1\right)\)

\(=\left(a-b\right)^2\cdot\frac{a+b-a+b}{a-b}\)

\(=\left(a-b\right)2b=2ab-2b^2\)