Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\text{ }\sqrt{\frac{3}{5}}+\sqrt{\frac{3}{7}}+1}=\frac{1}{\frac{\sqrt{3.7}+\sqrt{3.5}+\sqrt{5.7}}{\sqrt{5.7}}}=\frac{\sqrt{35}}{\sqrt{21}+\sqrt{35}+\sqrt{15}}\)
Tương tự :
\(\frac{1}{\sqrt{\frac{5}{3}}+\sqrt{\frac{5}{7}}+1}=\frac{\sqrt{21}}{\sqrt{35}+\sqrt{15}+\sqrt{21}}\)
\(\frac{1}{\sqrt{\frac{7}{3}}+\sqrt{\frac{7}{5}}+1}=\frac{\sqrt{15}}{\sqrt{21}+\sqrt{35}+\sqrt{15}}\)
Bây giờ chỉ việc cộng lại chung mẫu
Kq ; 1
\(B=\frac{1}{\sqrt{5}+\sqrt{7}}-\frac{1}{\sqrt{5}-\sqrt{7}}=\frac{\sqrt{5}-\sqrt{7}-\sqrt{5}-\sqrt{7}}{5-7}=\frac{-2\sqrt{7}}{-2}=\sqrt{7}\)
\(C=\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}+\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}=\sqrt{\left(\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}+\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}\right)^2}\)
\(C=\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}+2\sqrt{\frac{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}}+\frac{4-\sqrt{7}}{4+\sqrt{7}}}\)
\(C=\sqrt{\frac{\left(4+\sqrt{7}\right)^2}{16-7}+\frac{\left(4-\sqrt{7}\right)^2}{16-7}+2}\)
\(C=\sqrt{\frac{\left(4+\sqrt{7}+4-\sqrt{7}\right)^2-2\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}{16-7}+2}\)
\(C=\sqrt{\frac{16^2-2\left(16-7\right)}{9}+2}=\sqrt{\frac{238}{9}+2}=\sqrt{\frac{256}{9}}=\frac{16}{3}\)
Chúc bạn học tốt ~
với n >0, ta có :
\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=n+1-n=1\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)
Gọi biểu thức đã cho là A
\(A=\frac{1}{-\left(\sqrt{2}-\sqrt{1}\right)}-\frac{1}{-\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{1}{-\left(\sqrt{8}-\sqrt{7}\right)}-\frac{1}{-\left(\sqrt{9}-\sqrt{8}\right)}\)
\(A=-\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-...-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{9}-\sqrt{8}}\)
\(A=-\left(\sqrt{2}+\sqrt{1}\right)+\left(\sqrt{3}+\sqrt{2}\right)-...-\left(\sqrt{8}+\sqrt{7}\right)+\left(\sqrt{9}+\sqrt{8}\right)\)
\(A=-\sqrt{1}+\sqrt{9}=2\)
Phân tích mỗi hạng tử theo kiểu như dưới đây
\(\frac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}\right)^2-\left(\sqrt{2}\right)^2}\)
\(\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2}\)
Khi đó mọi mẫu đều bằng -1
Bạn tiếp tục làm và kết quả nhận được là \(1-\sqrt{9}\)
=\(\frac{1}{\sqrt{7-2\sqrt{6}_{ }}+1}+\frac{1}{\sqrt{7+2\sqrt{6}}+1}\)
=\(\frac{1}{\sqrt{\left(\sqrt{6}-1\right)^2+1}}+\frac{1}{\sqrt{\left(\sqrt{6+1}\right)^2}+1}\)
=\(\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{6}+2}\)
=\(\frac{\sqrt{6}+2+\sqrt{6}}{\sqrt{6}\left(\sqrt{6}+2\right)}\)
=\(\frac{2\sqrt{6}+2}{6+2\sqrt{6}}\)