K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

\(\frac{a^2x^3-a^2}{ax^2+ax+a}=\frac{a^2\left(x^3-1\right)}{a\left(x^2+x+1\right)}=\frac{a^2\left(x-1\right)\left(x^2+x+1\right)}{a\left(x^2+x+1\right)}=a\left(x-1\right)=ax-a\)

\(\frac{12x^2-26x-16}{4x^2+4x+1}=\frac{\left(6x-16\right)\left(2x+1\right)}{\left(2x+1\right)^2}=\frac{6x-16}{2x+1}\)

\(\frac{\left(x+a\right)^2-x^2}{2x+a}=\frac{\left(x+a+x\right)\left(x+a-x\right)}{2x+a}=\frac{\left(2x+a\right)a}{2x+a}=a\)

 

 

16 tháng 11 2017

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

55555555555555555

666666666666666666666666666

88888888888888888888

a: \(A=\left(\dfrac{2\left(2x+1\right)}{2\left(2x+4\right)}-\dfrac{x}{3x-6}-\dfrac{2x^3}{3x^3-12x}\right):\dfrac{6x+13x^2}{24x-12x^2}\)

\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^3}{3x\left(x^2-4\right)}\right):\dfrac{x\left(13x+6\right)}{x\left(24-12x\right)}\)

\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^2}{3\left(x-2\right)\left(x+2\right)}\right):\dfrac{13x+6}{-12\left(x-2\right)}\)

\(=\dfrac{3\left(2x+1\right)\left(x-2\right)-2x\left(x+2\right)-4x^2}{6\left(x+2\right)\left(x-2\right)}\cdot\dfrac{-12\left(x-2\right)}{13x+6}\)

\(=\dfrac{3\left(2x^2-3x-2\right)-2x^2-4x-4x^2}{x-2}\cdot\dfrac{-2}{13x+6}\)

\(=\dfrac{6x^2-9x-6-6x^2-4x}{x-2}\cdot\dfrac{-2}{13x+6}\)

\(=\dfrac{-\left(13x+6\right)\cdot\left(-2\right)}{\left(13x+6\right)\left(x-2\right)}=\dfrac{2}{x-2}\)

b: Để A>0 thì x-2>0

hay x>2

Để A>-1 thì A+1>0

\(\Leftrightarrow\dfrac{2+x-2}{x-2}>0\)

=>x/x-2>0

=>x>2 hoặc x<0

23 tháng 8 2016

a) \(\frac{x^2-y^2}{\left(x+y\right)\left(ay-\text{ax}\right)}=\frac{\left(x+y\right)\left(x-y\right)}{-a\left(x+y\right)\left(x-y\right)}=\frac{-1}{a}\)

b) \(\frac{2ax-2x-3y+3ay}{4ax+\text{4x}+6y+6ay}=\frac{2x\left(a-1\right)+3y\left(a-1\right)}{\text{4x}\left(a+1\right)+6y\left(a+1\right)}\)

\(=\frac{\left(a-1\right)\left(2x+3y\right)}{2\left(a+1\right)\left(2x+3y\right)}=\frac{a-1}{2\left(a+1\right)}\)

23 tháng 8 2016

lêu lêu lêu 

2 tháng 12 2019

a) \(\frac{x^2-16}{4x-x^2}=\frac{\left(x+4\right)\left(x-4\right)}{x\left(4-x\right)}\)

\(=\frac{\left(x+4\right)\left(x-4\right)}{-x\left(x-4\right)}=\frac{x+4}{-x}\)

b) \(\frac{x^2+4x+3}{2x+6}=\frac{x^2+3x+x+3}{2\left(x+3\right)}\)

\(=\frac{x\left(x+3\right)+\left(x+3\right)}{2\left(x+3\right)}\)

\(=\frac{\left(x+1\right)\left(x+3\right)}{2\left(x+3\right)}=\frac{x+1}{2}\)

c) \(\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)

\(=\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x^2-4\right)\left(x+1\right)}\)

\(=\frac{2x\left(x-2\right)^2}{x\left(x+2\right)\left(x-2\right)}\)

\(=\frac{2x\left(x-2\right)}{x\left(x+2\right)}\)

\(=\frac{2x^2-4x}{x^2+2x}\)

d) \(\frac{x^3-x^2y+xy^2}{x^3+y^3}\)

\(=\frac{x\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\frac{x}{x+y}\)