Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a)
\(A=\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}\)
\(=\sqrt{1\left(20+1\right)}+\sqrt{2\left(20+1\right)}+\sqrt{3\left(20+1\right)}\)
\(=\sqrt{20+1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
\(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}\)
\(=1\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{1}\cdot\sqrt{20}+\sqrt{2}\cdot\sqrt{20}+\sqrt{3}\cdot\sqrt{20}\right)\)
\(=\sqrt{1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\sqrt{20}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
\(=\left(\sqrt{20}+\sqrt{1}\right)\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
Ta thấy: \(\hept{\begin{cases}\left(\sqrt{20+1}\right)^2=20+1\\\left(\sqrt{20}+\sqrt{1}\right)^2=20+1+2\sqrt{20}\end{cases}}\)
\(\Rightarrow\left(\sqrt{20+1}\right)^2< \left(\sqrt{20}+\sqrt{1}\right)^2\Rightarrow\sqrt{20+1}< \sqrt{20}+\sqrt{1}\)
Vậy A < B.
Ta có: \(\sqrt[k+1]{\frac{k+1}{k}}>1\) với \(k=1,2,...,n\)
Áp dụng BĐT AM-GM cho \(k+1\) số ta có:
\(\sqrt[k+1]{\frac{k+1}{k}}=\sqrt[k+1]{\frac{1.1...1}{k}\cdot\frac{k+1}{k}}\)
\(< \frac{1+1+1+...+1+\frac{k+1}{k}}{k+1}=\frac{k}{k+1}+\frac{1}{k}=1+\frac{1}{k\left(k+1\right)}\)
Suy ra \(1< \sqrt[k+1]{\frac{k+1}{k}}< 1+\left(\frac{1}{k}-\frac{1}{k+1}\right)\)
Lần lượt cho \(k=1,2,3,...,n\) rồi cộng lại ta được:
\(n< \sqrt{2}+\sqrt[3]{\frac{3}{2}}+...+\sqrt[n+1]{\frac{n+1}{n}}< n+1-\frac{1}{n}< n+1\)
Vậy \(\left[a\right]=n\)
a) \(\sqrt{\frac{4}{81}}:\sqrt{\frac{25}{81}}-1\frac{2}{5}\)
\(=\frac{2}{9}:\frac{5}{9}-\frac{7}{5}\)
\(=\frac{2}{5}-\frac{7}{5}\)
\(=-1.\)
b) \(\sqrt{36}.\sqrt{\frac{25}{16}}+\frac{1}{4}\)
\(=6.\frac{5}{4}+\frac{1}{4}\)
\(=\frac{15}{2}+\frac{1}{4}\)
\(=\frac{31}{4}.\)
c) \(1\frac{1}{2}+\frac{4}{7}:\left(-\frac{8}{9}\right)\)
\(=\frac{3}{2}+\frac{4}{7}:\left(-\frac{8}{9}\right)\)
\(=\frac{3}{2}+\left(-\frac{9}{14}\right)\)
\(=\frac{6}{7}.\)
d) \(1,17-0,4.\left(\frac{1}{2}\right)^2-\frac{1}{-5}\)
\(=\frac{117}{100}-\frac{2}{5}.\frac{1}{4}-\left(-\frac{1}{5}\right)\)
\(=\frac{117}{100}-\frac{1}{10}+\frac{1}{5}\)
\(=\frac{107}{100}+\frac{1}{5}\)
\(=\frac{127}{100}.\)
Chúc bạn học tốt!
a, \(\frac{4}{81}:\sqrt{\frac{25}{81}-1\frac{2}{5}}\)
\(\Rightarrow\frac{4}{81}:\frac{5}{9}-\frac{7}{5}\)
\(\Rightarrow\frac{4}{81}.\frac{9}{5}-\frac{7}{5}\)
\(\Rightarrow\frac{4}{9}.\frac{1}{5}-\frac{7}{5}\)
\(\Rightarrow\frac{-59}{45}\)
b,\(\sqrt{36}.\sqrt{\frac{25}{16}+\frac{1}{4}}\)
\(\Rightarrow6.\frac{5}{4}+\frac{1}{4}\)
\(\Rightarrow\frac{15}{2}+\frac{1}{4}\)
\(\Rightarrow\frac{31}{4}\)
c,\(1\frac{1}{2}+\frac{4}{7}:\frac{-8}{9}\)
\(\Rightarrow\frac{3}{2}-\frac{4}{7}.\frac{-8}{9}\)
\(\Rightarrow\frac{3}{2}-\frac{9}{14}\)
\(\Rightarrow\frac{6}{7}\)
d, \(1,17-\left(0,4.\frac{1}{2}\right)^2-\frac{1}{5}\)
\(\Rightarrow\frac{117}{100}-\left(\frac{1}{5}\right)^2-\frac{1}{5}\)
\(\Rightarrow\frac{117}{100}-\frac{1}{25}-\frac{1}{5}\)
\(\Rightarrow\frac{93}{100}\)
1)Đặt \(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
\(A>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)(có 100 phân số)
\(A>\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)
\(A>\frac{100}{10}=10\left(đpcm\right)\)
2)\(A=\frac{\sqrt{x}-2010}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2011}{\sqrt{x+1}}=1-\frac{2011}{\sqrt{x}+1}\)
Để A đạt giá trị nhỏ nhất thì
\(1-\frac{2011}{\sqrt{x}+1}\) đạt GTNN
\(\Leftrightarrow\frac{2011}{\sqrt{x}+1}\) đạt GTLN
\(\Leftrightarrow\sqrt{x}+1\) đạt GTNN
\(\Leftrightarrow\sqrt{x}\) đạt GTNN
\(\Leftrightarrow x=0\)
\(\Rightarrow MIN_A=\frac{-2010}{1}=-2010\)
a) \(\left(\frac{2^2}{5}\right)+5\frac{1}{2}.\left(4,5-2,5\right)+\frac{2^3}{-4}\)
\(=\frac{4}{5}+\frac{11}{2}.2+\frac{-8}{4}\)
\(=\frac{4}{5}+11-2\)
\(=\frac{4}{5}+9\)
\(=\frac{49}{9}\)
b) \(\left(-2^3\right)+\frac{1}{2}:\frac{1}{8}-\sqrt{25}+\left|-64\right|\)
\(=-8+4-5+64\)
= 55
c) \(\frac{\sqrt{3^2+\sqrt{39}^2}}{\sqrt{91^2}-\sqrt{\left(-7\right)^2}}\)
\(=\frac{\sqrt{9+39}}{91-\sqrt{49}}\)
\(=\frac{\sqrt{48}}{91-7}\)
\(=\frac{4\sqrt{3}}{84}\)
\(=\frac{\sqrt{3}}{41}\)
d) Xem lại đề nhé em!
e) \(\sqrt{25}-3\sqrt{\frac{4}{9}}\)
\(=5-3.\frac{2}{3}\)
= 5 - 2
= 3
h) \(\left(-3^2\right).\frac{1}{3}-\sqrt{49}+\left(5^3\right):\sqrt{25}\)
\(=-9.\frac{1}{3}-7+125:5\)
\(=-3-7+25\)
= 15