Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^n+1\right)\left(x^n-2\right)-x^{n-3}\left(x^{n+3}-x^3\right)+2018=x^{2n}+x^n-2.x^n-2-x^{2n}+x^n+2018=2016.\)
\(N=\dfrac{\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)+1}{x^2+7x+11}\)
\(=\dfrac{\left[\left(x+2\right)\left(x+5\right)\right]\cdot\left[\left(x+3\right)\left(x+4\right)\right]+1}{x^2+7x+11}\)
\(=\dfrac{\left(x^2+7x+10\right)\left(x^2+7x+12\right)+1}{x^2+7x+11}\)
Đặt \(x^2+7x+11=y\), thay vào \(N\) ta được:
\(N=\dfrac{\left(y-1\right)\left(y+1\right)+1}{y}\)
\(=\dfrac{y^2-1+1}{y}\)
\(=\dfrac{y^2}{y}\)
\(=y\)
\(=x^2+7x+11\)
Vậy \(N=x^2+7x+11\).
\(\text{#}Toru\)
a + b , \(N=\left(\frac{2}{x^2+x}+\frac{1}{x+1}\right):\frac{1}{x+1}\)ĐK : \(x\ne0;-1\)
\(=\left(\frac{2}{x\left(x+1\right)}+\frac{x}{x\left(x+1\right)}\right):\frac{1}{x+1}=\frac{x+2}{x\left(x+1\right)}.\frac{x+1}{1}=\frac{x+2}{x}\)
c, Ta có : \(\frac{x+2}{x}=1+\frac{2}{x}\)
Để N nguyên khi \(2⋮x\Rightarrow x\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Vậy \(x=\pm1;\pm2\)thì N nguyên
d, ta có : \(N< 1\Rightarrow\frac{x+2}{x}< 1\Leftrightarrow\frac{x+2-x}{x}< 0\Rightarrow x< 0\)vì 2 > 0
bổ sung hộ mình
c, Kết hợp với đk vậy \(x=1;\pm2\)thì N nguyên
d, Kết hợp với đk vậy \(x< 0;x\ne-1\)
\(E=x^{n-2}\left(x^2-1\right)-x\left(x^{n-1}-x^{n-3}\right)\)
\(\Leftrightarrow E=x^n-x^{n-2}-x^n+x^{n-2}\)
\(\Leftrightarrow E=0\)
E = xn - 2(x2 - 1) - x(xn - 1 - xn - 3)
E = xn - xn - 1 - x(xn - 1 - xn - 3)
E = xn - xn - 2 - xn + xn - 2
E = (xn - xn) + (-xn - 2 + xn - 2)
E = 0