K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2021

\(C=\dfrac{\dfrac{1}{2}-cos2a}{\dfrac{\sqrt{3}}{2}+sin2a}=\dfrac{cos\dfrac{\pi}{3}-cos2a}{sin\dfrac{\pi}{3}+sin2a}=\dfrac{-2sin\left(a+\dfrac{\pi}{6}\right)sin\left(\dfrac{\pi}{6}-a\right)}{2sin\left(a+\dfrac{\pi}{6}\right)cos\left(\dfrac{\pi}{6}-a\right)}=-tan\left(\dfrac{\pi}{6}-a\right)=tan\left(a-\dfrac{\pi}{6}\right)\)

NV
14 tháng 6 2020

\(\frac{1-2sin2a+cos2a}{1+2sin2a+cos2a}=\frac{1-4sina.cosa+2cos^2a-1}{1+4sina.cosa+2cos^2a-1}=\frac{2cosa\left(cosa-2sina\right)}{2cosa\left(cosa+2sina\right)}\)

\(=\frac{cosa-2sina}{cosa+2sina}\)

Bạn coi lại đề, muốn ra được biểu thức vế phải thì trước sin2a không được có số 2

Sửa đề: x căn x+x

\(P=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\dfrac{1}{x+1}\right)\cdot\dfrac{x+1}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}+1}{x+1}\cdot\dfrac{x+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

13 tháng 6 2021

Ta có:\(\dfrac{\sqrt{3}-2cos3a}{\sqrt{3}+2cos3a}\)=\(\dfrac{\sqrt{3}-2.\left(4cos^3a-3cosa\right)}{\sqrt{3}+2.\left(4cos^3a-3cosa\right)}\)

                               =\(\dfrac{\sqrt{3}-8cos^3a+6cosa}{\sqrt{3}+8cos^3a-6cosa}\)

                               =\(\dfrac{-\left(\sqrt{3}+8cos^3a-6cosa\right)}{\sqrt{3}+8cos^3a-6cosa}\) 

                               =-1

        Chúc bn học tốt!!

NV
19 tháng 4 2021

Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý

Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)

19 tháng 4 2021

Mình sửa lại đề rồi á

NV
18 tháng 5 2021

\(\dfrac{sina+sin5a+sin3a}{cosa+cos5a+cos3a}=\dfrac{2sin3a.cos2a+sin3a}{2cos3a.cos2a+cos3a}=\dfrac{sin3a\left(2cos2a+1\right)}{cos3a\left(2cos2a+1\right)}=\dfrac{sin3a}{cos3a}=tan3a\)

\(\dfrac{1+sin4a-cos4a}{1+sin4a+cos4a}=\dfrac{1+2sin2a.cos2a-\left(1-2sin^22a\right)}{1+2sin2a.cos2a+2cos^22a-1}=\dfrac{2sin2a\left(sin2a+cos2a\right)}{2cos2a\left(sin2a+cos2a\right)}=\dfrac{sin2a}{cos2a}=tan2a\)

\(96\sqrt{3}sin\left(\dfrac{\pi}{48}\right)cos\left(\dfrac{\pi}{48}\right)cos\left(\dfrac{\pi}{24}\right)cos\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{6}\right)=48\sqrt{3}sin\left(\dfrac{\pi}{24}\right)cos\left(\dfrac{\pi}{24}\right)cos\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{6}\right)\)

\(=24\sqrt{3}sin\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{6}\right)=12\sqrt{3}sin\left(\dfrac{\pi}{6}\right)cos\left(\dfrac{\pi}{6}\right)\)

\(=6\sqrt{3}sin\left(\dfrac{\pi}{3}\right)=6\sqrt{3}.\dfrac{\sqrt{3}}{2}=9\)

\(A+B+C=\pi\Rightarrow A+B=\pi-C\Rightarrow tan\left(A+B\right)=tan\left(\pi-C\right)\)

\(\Rightarrow\dfrac{tanA+tanB}{1-tanA.tanB}=-tanC\Rightarrow tanA+tanB=-tanC+tanA.tanB.tanC\)

\(\Rightarrow tanA+tanB+tanC=tanA.tanB.tanC\)

15 tháng 4 2021

\(A=\dfrac{\sqrt{2}.cosx-2cos\left(\dfrac{\pi}{4}+x\right)}{-\sqrt{2}.sinx+2sin\left(\dfrac{\pi}{4}+x\right)}\)

\(=\dfrac{\sqrt{2}.cosx-2\left(cos\dfrac{\pi}{4}.cosx-sin\dfrac{\pi}{4}.sinx\right)}{-\sqrt{2}.sinx+2\left(sin\dfrac{\pi}{4}.cosx+cos\dfrac{\pi}{4}.sinx\right)}\)

\(=\dfrac{\sqrt{2}.cosx-\sqrt{2}.cosx+\sqrt{2}.sinx}{-\sqrt{2}.sinx+\sqrt{2}.cosx+\sqrt{2}.sinx}\)

\(=\dfrac{\sqrt{2}.sinx}{\sqrt{2}.cosx}=tanx\)

\(A=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{\left(\sqrt{a}+3\right).\left(\sqrt{a}-2\right)}-\dfrac{1}{\sqrt{a}-2}\)

=\(\dfrac{\left(\sqrt{a}+2\right).\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right).\left(\sqrt{a}-2\right)}\)

\(=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right).\left(\sqrt{a}-2\right)}\)

\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right).\left(\sqrt{a}-2\right)}\)

\(=\dfrac{\left(\sqrt{a}-4\right).\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right).\left(\sqrt{a}-2\right)}\)

\(=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

Điều kiện bạn tự ghi nhé haha

\(B=\dfrac{1}{\sqrt{a}+1}:\left(\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-3}+\dfrac{\sqrt{a}+2}{\left(\sqrt{a}-3\right).\left(\sqrt{a}-2\right)}\right)\)

\(=\dfrac{1}{\sqrt{a}+1}:\left(\dfrac{\left(\sqrt{a}+3\right).\left(\sqrt{a}-3\right)-\left(\sqrt{a}-2\right).\left(\sqrt{a}+2\right)+\sqrt{a}+2}{\left(\sqrt{a}-3\right).\left(\sqrt{a}-2\right)}\right)\)

\(=\dfrac{1}{\sqrt{a}+1}:\dfrac{a-9-a+4+\sqrt{a}+2}{\left(\sqrt{a}-3\right).\left(\sqrt{a}-2\right)}\)

\(=\dfrac{1}{\sqrt{a}+1}:\dfrac{\sqrt{a}-3}{\left(\sqrt{a}-3\right).\left(\sqrt{a}-2\right)}\)

\(=\dfrac{1}{\sqrt{a}+1}:\dfrac{1}{\sqrt{a}-2}\)

\(=\dfrac{1}{\sqrt{a}+1}.\dfrac{\sqrt{a}-2}{1}=\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\)

4 tháng 12 2017

Đặt vế trái là T, ta có:

\(\dfrac{a}{\sqrt{b+1}}=\dfrac{a\sqrt{2}}{\sqrt{2}.\sqrt{b+1}}\ge\dfrac{a\sqrt{2}}{\dfrac{b+1+2}{2}}=\dfrac{a.2\sqrt{2}}{b+3}\)

Tương tự: \(\dfrac{b}{\sqrt{c+1}}\ge\dfrac{b.2\sqrt{2}}{c+3}\)

\(\dfrac{c}{\sqrt{a+1}}\ge\dfrac{c.2\sqrt{2}}{a+3}\)

Cộng vế theo vế các BĐT vừa chứng minh, ta được

\(T\ge2\sqrt{2}\left(\dfrac{a}{b+3}+\dfrac{b}{c+3}+\dfrac{c}{a+3}\right)=2\sqrt{2}\left(\dfrac{a^2}{ab+3a}+\dfrac{b^2}{bc+3b}+\dfrac{c^2}{ac+3c}\right)\)

\(T\ge2\sqrt{2}.\dfrac{\left(a+b+c\right)^2}{ab+bc+ca+3\left(a+b+c\right)}\)

\(T\ge2\sqrt{2}.\dfrac{\left(a+b+c\right)^2}{\dfrac{\left(a+b+c\right)^2}{3}+3\left(a+b+c\right)}\)

\(T\ge2\sqrt{2}.\dfrac{3^2}{\dfrac{3^2}{3}+9}=\dfrac{3\sqrt{2}}{2}\)(đpcm)

Đẳng thức xảy ra khi a=b=c=1

4 tháng 12 2017

b) Đặt vế trái là N,ta có:

\(\sum\sqrt{\dfrac{a^3}{b+3}}=\sum\sqrt{\dfrac{a^4}{ab+3}}=\sum\dfrac{a^2}{\sqrt{ab+3}}=\sum\dfrac{2a^2}{\sqrt{4a\left(b+3\right)}}\ge\sum\dfrac{2a^2}{\dfrac{4a+b+3}{2}}=\sum\dfrac{4a^2}{4a+b+3}\)

\(\sum\dfrac{4a^2}{4a+b+3}\ge\dfrac{\left(2a+2b+2c\right)^2}{4a+b+3+4b+c+3+4c+a+3}=\dfrac{3}{2}\)(đpcm)

Đẳng thức xảy ra khi a=b=c=1