Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{-9a}-\sqrt{9+12a+4a^2}\) \(=\sqrt{9.\left(-a\right)}-\sqrt{\left(3+2a\right)^2}=3\sqrt{-a}-\left|3+2a\right|\)
\(=3\sqrt{9}-\left|3+2\left(-9\right)\right|=3.3-15=-6\)
b) \(1+\dfrac{3m}{m-2}\sqrt{m^2-4x+4}=1+\dfrac{3m}{m-2}\sqrt{\left(m-2\right)^2}=1+\dfrac{3m\left|m-2\right|}{m-2}\)
\(=\left\{{}\begin{matrix}1+3m\left(nếu\left(m-2\right)>0\right)\\1-3m\left(nến\left(m-2\right)< 0\right)\end{matrix}\right.\) \(=\left\{{}\begin{matrix}1+3m\left(nếu\left(m>2\right)\right)\\1-3m\left(nếu\left(m< 2\right)\right)\end{matrix}\right.\)
ta có : \(m=1,5< 2\) vậy giá trị của biểu thức tại m = 1,5 là \(1-3m\) = \(1-3.1,5=-3,5\)
c) \(\sqrt{1-10a+25a^2}-4a=\sqrt{\left(1-5a\right)^2}-4a=\left|1-5a\right|-4a\)
\(=\left\{{}\begin{matrix}1-9a\left(nếu\left(1-5a\right)\ge0\right)\\a-1\left(nếu\left(1-5a\right)< 0\right)\end{matrix}\right.\) \(=\left\{{}\begin{matrix}1-9a\left(nếu\left(a\le\dfrac{1}{5}\right)\right)\\a-1\left(nếu\left(a>\dfrac{1}{5}\right)\right)\end{matrix}\right.\)
ta có : \(a=\sqrt{2}>\dfrac{1}{5}\) vậy giá trị của biểu thức tại \(a=\sqrt{2}\) là a - 1 = \(\sqrt{2}-1\)
d) \(4x-\sqrt{9x^2+6x+1}=4x-\sqrt{\left(3x+1\right)^2}=4x-\left|3x+1\right|\)
\(=\left\{{}\begin{matrix}x-1\left(nếu\left(x\ge-\dfrac{1}{3}\right)\right)\\7x+1\left(nếu\left(x< -\dfrac{1}{3}\right)\right)\end{matrix}\right.\)
ta có : \(x=-\sqrt{3}< -\dfrac{1}{3}\) vậy giá trị của biểu thức tại \(x=-\sqrt{3}\) là \(7.\left(-\sqrt{3}\right)+1=1-7\sqrt{3}\)
A=|m+1|+|m-1|=|m+1|+|1-m|>=|m+1+1-m|=2
Dấu = xảy ra khi -1<=m<=1
B=|2a-1|+|2a-3|=|2a-1|+|3-2a|>=|2a-1+3-2a|=2
Dấu = xảy ra khi 1/2<=a<=3/2
a) \(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}=\left|3a^2\right|=3a^2\)
b) \(2\sqrt{a^2}-5a=2\left|a\right|-5a=-2a-5a=-7a\)
c) \(\sqrt{16\left(1+4x+4x^2\right)}=\sqrt{\left[4\left(1+2x\right)\right]^2}=\left|4\left(1+2x\right)\right|=4\left(1+2x\right)\)
\(A=\dfrac{3x}{x-2}\cdot\sqrt{x^2-4x+4}\)
\(=\dfrac{3x}{x-2}\cdot\left(x-2\right)\)
=3x
\(B=\dfrac{-5y}{x+3}\cdot\sqrt{x^2+6x+9}\)
\(=\dfrac{-5y}{x+3}\cdot\left|x+3\right|\)
\(=\pm5y\)
Bài 1:
a) \(\dfrac{a+\sqrt{a}}{\sqrt{a}}=\sqrt{a}+1\)
b) \(\dfrac{\sqrt{\left(x-3\right)^2}}{3-x}=\dfrac{\left|x-3\right|}{3-x}=\pm1\)
Bài 2:
a) \(\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}=\dfrac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}=\pm\dfrac{1}{3x+1}\)
b) \(4-x-\sqrt{x^2-4x+4}=4-x-\left|x-2\right|=\left[{}\begin{matrix}6-2x\left(x\ge2\right)\\2\left(x< 2\right)\end{matrix}\right.\)
a: =>2*căn x+5+căn x+5-1/3*3*căn x+5=4
=>2*căn(x+5)=4
=>căn (x+5)=2
=>x+5=4
=>x=-1
b: =>\(6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
=>2*căn x-1=16
=>x-1=64
=>x=65
c, \(\sqrt{\left(x-3\right)^2}-2\sqrt{\left(x-1\right)^2}+\sqrt{x^2}=0\\ \Leftrightarrow\left|x-3\right|-2\left|x-1\right|+\left|x\right|=0\left(1\right)\)
TH1: \(x\ge3\)
\(\left(1\right)\Rightarrow x-3-2x+2+x=0\\ \Leftrightarrow-1=0\left(loại\right)\)
TH2: \(2\le x< 3\)
\(\left(1\right)\Rightarrow3-x-2x+2+x=0\\ \Leftrightarrow-2x=-5\\ \Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\)
TH3: \(0\le x< 2\)
\(\left(1\right)\Rightarrow3-x+2x-2+x=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)
TH4: \(x< 0\)
\(\left(1\right)\Rightarrow3-x+2x-2-x-=0\\ \Leftrightarrow1=0\left(loại\right)\)
Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{5}{2}\right\}\)
Đẫ bảo là a = -9 thì biểu thức không tính đc mở máy tính ra BẤm thử mà xem
\(a)\sqrt{-9a}-\sqrt{9+12a+4a^2}\)
\(==\sqrt{3^2.\left(-a\right)}-\sqrt{3^2-2.3.2a+\left(2a\right)^2}\)
\(=3\sqrt{-a}-\sqrt{\left(3+2a\right)^2}\)
\(=3\sqrt{a}-\left|3+2a\right|\)
\(b)1+\frac{3m}{m-2}\sqrt{m^2-4m+4}\)
\(=1+\frac{3m}{m-2}\sqrt{\left(m\right)^2-2.2m+2^2}\)
\(=1+\frac{3m}{m-2}\sqrt{\left(m-2\right)^2}\)
\(=1+\frac{3m}{m-2}|m-2|\)
\(c)4x-\sqrt{9x^2+6x+1}\)
\(=4x-\sqrt{\left(3x\right)^2+2.3x+1}\)
\(=4x-\sqrt{\left(3x+1\right)^2}\)
\(=4x-|3x+1|\)