Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\sqrt{2}}.A=\frac{\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}}{\sqrt{\left(2x-1\right)+2\sqrt{2x-1}+1}-\sqrt{\left(2x-1\right)-2\sqrt{2x-1}+1}}\)
\(=\frac{\sqrt{\left[\left(\sqrt{x-1}+1\right)\right]^2}+\sqrt{\left[\left(\sqrt{x-1}-1\right)^2\right]}}{\sqrt{\left[\sqrt{2x-1}+1\right]^2}-\sqrt{\left[\left(\sqrt{2x-1}\right)-1\right]^2}}\)
\(=\frac{\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|}{\left|\sqrt{2x-1}+1\right|-\left|\sqrt{2x-1}-1\right|}\)
DO X>2 NÊN TOÀN BỘ BIỂU THỨC TRONG TRỊ TUYỆT ĐỐI ĐỀU DƯƠNG
\(\frac{1}{\sqrt{2}}.A=\frac{2\sqrt{x-1}}{2}=\sqrt{x-1}\)
=>\(A=\frac{\sqrt{x-1}}{\sqrt{2}}\)
\(A=\frac{\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}}{\sqrt{\left(\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}\right)}-\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}}\)=\(\frac{\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}}{\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}}\)Vì x>/2
=\(\frac{\sqrt{x-1}+1+\sqrt{x-1}-1}{\sqrt{x-1}+1-\sqrt{x-1}+1}=\frac{2\sqrt{x-1}}{2}=\sqrt{x-1}\)