Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hãy tích cho tui đi
vì câu này dễ mặc dù tui ko biết làm
Yên tâm khi bạn tích cho tui
Tui sẽ ko tích lại bạn đâu
THANKS
\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Dấu ''='' xảy ra <=> a = b = c = 1
Đặt \(\left\{{}\begin{matrix}a-b=x\\b-c=y\\c-a=z\end{matrix}\right.\) thì ta có \(x+y+z=0\). Điều kiện đã cho tương đương \(x^2+y^2+z^2=\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2+y^2+z^2=2\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=4\left(xy+yz+zx\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2=4\left(xy+yz+zx\right)\)
\(\Leftrightarrow4\left(xy+yz+zx\right)=0\)
\(\Leftrightarrow xy+yz+zx=0\)
\(\Leftrightarrow x^2+y^2+z^2=0\)
\(\Leftrightarrow x=y=z=0\)
\(\Leftrightarrow a-b=b-c=c-a=0\)
\(\Leftrightarrow a=b=c\)
Ta có đpcm
Lời giải:
Đặt $a-b=x; b-c=y, c-a=z$ thì $x+y+z=0$.
ĐKĐB tương đương với:
$x^2+y^2+z^2=(y-z)^2+(z-x)^2+(x-y)^2$
$\Leftrightarrow x^2+y^2+z^2=2(x^2+y^2+z^2)-2(xy+yz+xz)$
$\Leftrightarrow x^2+y^2+z^2=2(xy+yz+xz)$
$\Leftrightarrow 2(x^2+y^2+z^2)=x^2+y^2+z^2+2(xy+yz+xz)$
$\Leftrightarrow 2(x^2+y^2+z^2)=(x+y+z)^2=0$
$\Rightarrow x=y=z=0$
$\Leftrightarrow a-b=b-c=c-a=0$
$\Leftrightarrow a=b=c$ (ta có đpcm)
a) mình làm cho bạn rồi đó. theo hằng đẳng thức thôi: \(a^2+b^2=\left(a^2+2ab+b^2\right)-2ab=\left(a+b\right)^2-2ab\)
cái này mình áp dụng cho cả bài đó: \(\left(a+b-c\right)^2+\left(b+c-a\right)^2=\left(a+b-c+b+c-a\right)^2-2\left(a+b-c\right)\left(b+c-a\right)\) đó
b) \(=\left(a+b+c\right)\left(a+b+c+1\right)+\left(b-c\right)\left(b-c+2\right)\)
c) đây là hằng đẳng thức luôn rồi đó: \(a^2+2ab+b^2\). với a=a+b+c. b= b-c
\(=\left(a+b+c+b-c\right)^2=\left(a+2b\right)^2\)