Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. -4x( x + 3 )( x - 4 ) - 3x( x2 - x + 1 )
= -4x( x2 - x - 12 ) - 3x( x2 - x + 1 )
= -4x3 + 4x2 + 48x - 3x3 + 3x2 - 3x
= -7x3 + 7x2 + 45x
2. a) 4x( x - 5 ) - ( x - 1 )( 4x - 3 ) = 5
<=> 4x2 - 20x - ( 4x2 - 7x + 3 ) = 5
<=> 4x2 - 20x - 4x2 + 7x - 3 = 5
<=> -13x - 3 = 5
<=> -13x = 8
<=> x = -8/13
b) 6( x - 3 )( x - 4 ) - 6x( x - 2 ) = 4
<=> 6( x2 - 7x + 12 ) - 6x2 + 12x = 4
<=> 6x2 - 42x + 72 - 6x2 + 12x = 4
<=> -30x + 72 = 4
<=> -30x = -68
<=> x = 34/15
Bài 1 :
\(-4x\left(x+3\right)\left(x-4\right)-3x\left(x^2-x+1\right)\)
\(=-7x^3+7x^2+45x\)
Bài 2 :
a, \(4x\left(x-5\right)-\left(x-1\right)\left(4x-3\right)=5\)
\(\Leftrightarrow4x^2-20x-\left[4x^2-7x+3\right]=5\)
\(\Leftrightarrow4x^2-20x-4x^2+7x-3=5\)
\(\Leftrightarrow-13x-8=0\Leftrightarrow x=-\frac{8}{13}\)
b, \(6\left(x-3\right)\left(x-4\right)-6x\left(x-2\right)=4\)
\(\Leftrightarrow6x^2-42x+72-6x^2+12x=4\)
\(\Leftrightarrow-30x+68=0\Leftrightarrow x=\frac{34}{15}\)
\(4x^2-\left(x+3\right)\left(x-5\right)+x\)
\(=4x^2-x^2+2x+15+x\)
\(=3x^2+3x+15\)
\(=3\left(x^2+x+5\right)\)
1. (-2x - 1)(x2 - x - 3) - (x + 2)(x + 1)2
= -2x3 + 2x2 + 6x - x2 + x + 3 - (x + 2)(x2 + 2x + 1)
= -2x3 + x2 + 7x + 3 - x3 - 2x2 - x - 2x2 - 2x - 2
= -3x3 - 3x2 + 4x + 1
2. (x + 2)(x - 1) - (x - 3)(x + 2) = 3
=> (x + 2)(x - 1 - x + 3) = 3
=> (x + 2).0 = 3
...(xem lại đề)
\(\left(x+2\right)\left(x-1\right)-\left(x-3\right)\left(x+2\right)=3\)
\(\Leftrightarrow\left(x+2\right)\left(x-1-x+3\right)=3\)
\(\Leftrightarrow2\left(x+2\right)=3\)
\(\Leftrightarrow x+2=\frac{3}{2}\)
\(\Leftrightarrow x=\frac{3}{2}-2\)
\(\Leftrightarrow x=-\frac{1}{2}\)
a: ĐKXĐ: \(x\notin\left\{-3;2\right\}\)
b: \(A=\dfrac{x^2-4-5+x+3}{\left(x-2\right)\left(x+3\right)}=\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}=\dfrac{x+2}{x-2}\)
c: Để A=3/4 thì 4x-8=3x+6
=>x=14
d: Để A nguyên thì \(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 1
a) \(3x\left(4x^2-2x+3\right)\)
\(=3x.4x^2-3x.2x+3x.3\)
\(=12x^3-6x^2+9x\)
b) \(\left(2x+5\right)^2-4x^2\)
\(=\left[\left(2x+5\right)-4x\right]\left[\left(2x+5\right)+4x\right]\)
\(=\left(2x+5-4x\right)\left(2x+5+4x\right)\)
\(=\left(-2x+5\right)\left(6x+5\right)\)
c) \(\left(x-2\right)^2+\left(x-3\right)\left(x+3\right)\)
\(=\left(x^2-2.x.2+2^2\right)+\left(x^2-3^2\right)\)
\(=\left(x^2-4x+4\right)+\left(x^2-9\right)\)
Bài 2
a) \(6x^2y+18x\)
\(=6x\left(xy+3\right)\)
b) \(x^2-7x+3x-21\)
\(=\left(x^2-7x\right)+\left(3x-21\right)\)
\(=x\left(x-7\right)+3\left(x-7\right)\)
\(=\left(x-7\right)\left(x+3\right)\)
c) \(x^2-4y^2+2x+1\)
\(=\left(x^2+2x+1\right)-4y^2\)
\(=\left(x^2+2.x.1+1^2\right)-4y^2\)
\(=\left(x+1\right)^2-4y^2\)
\(=\left(x+1\right)^2-\left(2y\right)^2\)
\(=\left[\left(x+1\right)-2y\right]\left[\left(x+1\right)+2y\right]\)
\(=\left(x+1-2y\right)\left(x+1+2y\right)\)
d) \(x^2+3x-3y-y^2\)
\(=\left(x^2-y^2\right)+\left(3x-3y\right)\)
\(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)\)
\(=\left(x-y\right)\left[\left(x+y\right)+3\right]\)
\(=\left(x-y\right)\left(x+y+3\right)\)
Bài 3
a) \(\left(x+3\right)\left(x+2\right)-x\left(x+3\right)=10\)
\(\Rightarrow\left(x+3\right)\left[\left(x+2\right)-x\right]=10\)
\(\Rightarrow\left(x+3\right)\left(x+2-x\right)=10\)
\(\Rightarrow\left(x+3\right).2=10\)
\(\Rightarrow x+3=5\)
\(\Rightarrow x=2\)
b) \(\left(x+2\right)^2-\left(x-3\right)\left(x+3\right)=10\)
\(\Rightarrow\left(x^2+2.x.2+2^2\right)-\left(x^2-3^2\right)=10\)
\(\Rightarrow\left(x^2+4x+4\right)-\left(x^2-9\right)=10\)
\(\Rightarrow x^2+4x+4-x^2+9=10\)
\(\Rightarrow4x+13=10\)
\(\Rightarrow4x=-3\)
\(\Rightarrow x=-\frac{3}{4}\)
c) \(4x^2-25=0\)
\(\Rightarrow\left(2x\right)^2-5^2=0\)
\(\Rightarrow\left(2x-5\right)\left(2x+5\right)=0\)
\(\Rightarrow2x-5=0\) hoặc \(2x+5=0\)
\(\Rightarrow2x=5\) hoặc\(2x=-5\)
\(\Rightarrow x=\frac{5}{2}\) hoặc\(x=-\frac{5}{2}\)
d) \(2x\left(x+3\right)+x^2+3x=0\)
\(\Rightarrow2x\left(x+3\right)+x\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(2x+x\right)=0\)
\(\Rightarrow\left(x+3\right).3x=0\)
\(\Rightarrow x+3=0\) hoặc \(3x=0\)
\(\Rightarrow x=-3\) hoặc \(x=0\)
K MÌNH VỚI NHÉ
A)\(x\left(x-1\right)+6\left(x-3\right)\left(x+3\right)\)
\(=x^2-x+6\left(x^2-9\right)\)
\(=x^2-x+6x^2-54\)
\(=7x^2-x-54\)
F.\(\left(2-x\right)\left(2+x\right)-2x\left(x-7\right)+x\left(x+1\right)\)
\(=4-x^2-2x^2+14x+x^2+x\)
\(=-2x^2+15x+4\)
Em bấm vào biểu tượng \(\sum\) trên thanh công cụ và gõ phân số để mn dễ hỗ trợ nhé!
`(x^2+x-6)/(x^2+4x+3):(x^2-10x+25)/(x^2-4x-5)(x ne -1,x ne 5,x ne -3)`
`=((x-2)(x+3))/((x+1)(x+3)):(x-5)^2/((x+1)(x-5))`
`=(x-2)/(x+1):(x-5)/(x+1)`
`=(x-2)/(x-5)`
|x+3|+|x+5|-|x+1/2|+|7-x|
TH1: -x-3-x-5+x-1/2+7-x
= -2x-3/2
TH2: -x-3-x-5+x-1/2+x-7
= 0-31/2
=-31/2