K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(U=x^3+9x^2y+27xy^2+27y^3-x^3-27y^3-2x\left(x^2-4x+4\right)\)

\(=9x^2y+27xy^2-2x^3+8x^2-8x\)

\(=9\cdot1\cdot2+27\cdot1\cdot2^2-2\cdot1^3+8\cdot1^2-8\cdot1\)

\(=18+108-2-8-8=108\)

29 tháng 6 2018

\(U=\left(x+3y\right)^3-\left(x+3y\right)\left(x^2-3xy+9y^2\right)-2x\left(x-2\right)^2=x^3+9x^2y+27xy^2+27y^3-x^3-27y^3-2x^3+8x^2-8x=-2x^3+9x^2y+27xy^2+8x^2-8x\)Thay : x = 1 ; y = 2 , ta có :

\(U=-2.1+9.1.2+27.1.4+8.1-8.1=124\)

13 tháng 9 2021

a)A=(2x+3y)(x2-xy+1)-x2(2x-y)-3x tại x=-1;y=2

Rút gọn:

 A = 2x3 - 2x2y + 2x + 3x2y - 3xy2+ 3y - 2x3 + x2y - 3x  (phá ngoặc)

=> A = 2x2y - 3xy- x + 3y

Thay x = -1 và y = 2; ta được:

A = 23

b)B=2xy.(1/4x2-3y)+5y(xy-x3+1) tại x=1;y=1/2

B = x3y/2 - 6xy2 + 5xy2 - 5x3y + 5y (phá ngoặc)

B = -9x3y/10 - xy2 + 5y

Thay x = 1 và y = 1/2 ta được:

B = 0

 

Bài này tuy có hơi cồng kềnh chút nhưng chỉ cần em chịu khó phá ngoặc là sẽ giải quyết được nhé!

1: \(F=\left(\dfrac{-1}{2}-2\right)^3-\left(-\dfrac{1}{2}+3\right)^3+\left(-2+\dfrac{3}{2}\right)^3+\left(-\dfrac{1}{2}+1\right)^2\)

\(=\dfrac{-125}{8}-\dfrac{125}{8}+\dfrac{-1}{8}+\dfrac{1}{4}\)

\(=\dfrac{-251}{8}+\dfrac{1}{4}=\dfrac{-249}{8}\)

2:\(N=\left(-1-1\right)^2-\left(-1+\dfrac{1}{8}\right)+\left(-1+1\right)^3\)

=4+1-1/8

=5-1/8=39/8

27 tháng 9 2018

a) Kết quả P = 15 2 ;                 b) Kết quả Q = 7 2 .

1 tháng 11 2023

 Thực hiện phép tính (10x^5y^2-6x^2y^5+8x^2y^5):(-2x^2y^2)

Bài 4: 

Ta có: \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)

\(\Leftrightarrow8x-24x^2+2-6x+24x^2-60x-4x+40=-50\)

\(\Leftrightarrow-62x=-92\)

hay \(x=\dfrac{46}{31}\)

20 tháng 9 2021

2) \(P=\left(2x+1\right)\left(4x^2-2x+1\right)=8x^3+1=8.\left(\dfrac{1}{2}\right)^3+1=8.\dfrac{1}{8}+1=2\)

\(Q=\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3=1^3+27.\left(\dfrac{1}{3}\right)^3=1+27.\dfrac{1}{27}=2\)

3) \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)

\(\Leftrightarrow-24x^2+2x+2+24x^2-64x+10=-50\)

\(\Leftrightarrow-62x=-62\Leftrightarrow x=1\)

a: \(F=-\left(2x-y\right)^3-x\left(2x-y\right)^2-y^3\)

\(=-\left(2x-y\right)^2\cdot\left[2x-y+x\right]-y^3\)

\(=-\left(2x-y\right)^2\cdot\left(3x-y\right)-y^3\)

\(=\left(-4x^2+4xy-y^2\right)\left(3x-y\right)-y^3\)

\(=-12x^3+4x^2y+12x^2y-4xy^2-3xy^2+y^3-y^3\)

\(=-12x^3+16x^2y-7xy^2\)

\(\left(x-2\right)^2+y^2=0\)

mà \(\left(x-2\right)^2+y^2>=0\forall x,y\)

nên dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y=0\end{matrix}\right.\)

=>x=2 và y=0

Thay x=2 và y=0 vào F, ta được:

\(F=-12\cdot2^3+16\cdot2^2\cdot0-7\cdot2\cdot0^2\)

\(=-12\cdot2^3\)

\(=-12\cdot8=-96\)

b: \(G=\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=x^3+y^3+3\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)

\(=x^3+y^3+3\left(8x^3-y^3\right)\)

\(=x^3+y^3+24x^3-3y^3\)

\(=25x^3-2y^3\)

Ta có: \(\left\{{}\begin{matrix}x+y=2\\y=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-3\\x=2-y=2-\left(-3\right)=2+3=5\end{matrix}\right.\)

Thay x=5 và y=-3 vào G, ta được:

\(G=25\cdot5^3-2\cdot\left(-3\right)^3\)

\(=25\cdot125-2\cdot\left(-27\right)\)

\(=3125+54=3179\)

c: \(H=\left(x+3y\right)\left(x^2-3xy+9y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)

\(=\left(x+3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]+\left(3x-y\right)\left[\left(3x\right)^2+3x\cdot y+y^2\right]\)

\(=x^3+27y^3+27x^3-y^3\)

\(=28x^3-26y^3\)

Ta có: \(\left\{{}\begin{matrix}3x-y=5\\x=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=3x-5=3\cdot2-5=1\end{matrix}\right.\)

Thay x=2 và y=1 vào H, ta được:

\(H=28\cdot2^3-26\cdot1^3\)

\(=28\cdot8-26\)

=198