Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cosa}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{a}{2}-1\right)}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+cos^2\frac{a}{2}-\frac{1}{2}}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{a}{2}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{a}{4}-1\right)}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{a}{4}}=\sqrt{\frac{1}{2}+\frac{1}{2}\left(cos^2\frac{a}{8}-1\right)}\)
\(=cos\frac{a}{8}\Rightarrow n=8\)
chịu e mới hk chút ít về toán lp 11 để hk tốt nâng cao 6 thôi chứ cái này e chưa thử
tôi phải sợ em luôn lớp 6 mà đã học kiến thức lớp trên
\(A=1-cos^2x+2cosx+1=3-\left(cosx-1\right)^2\le3\)
\(A_{max}=3\) khi \(cosx=1\)
\(B=1-sin^2x-2sin^2x-3=-1-\left(sinx+1\right)^2\le-1\)
\(B_{max}=-1\) khi \(sinx=-1\)
\(A=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{2}-1\right)}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{cos^2\frac{x}{2}}}}=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{2}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{4}-1\right)}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{cos^2\frac{x}{4}}}=\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{4}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{8}-1\right)}=\sqrt{cos^2\frac{x}{8}}=cos\frac{x}{8}\)
\(B=\sqrt{2+\sqrt{2+\sqrt{2+2\left(2cos^2\frac{a}{2}-1\right)}}}\)
\(=\sqrt{2+\sqrt{2+\sqrt{4cos^2\frac{a}{2}}}}=\sqrt{2+\sqrt{2+2cos\frac{a}{2}}}\)
\(=\sqrt{2+\sqrt{2+2\left(cos^2\frac{a}{4}-1\right)}}=\sqrt{2+\sqrt{4cos^2\frac{a}{4}}}\)
\(=\sqrt{2+2cos\frac{a}{4}}=\sqrt{2+2\left(2cos^2\frac{a}{8}-1\right)}=2cos\frac{a}{8}\)
\(\sqrt{\frac{1}{2}-\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{a}{2}-1\right)}}\)
\(=\sqrt{\frac{1}{2}-\frac{1}{2}\sqrt{\frac{1}{2}+cos^2\frac{a}{2}-\frac{1}{2}}}\)
\(=\sqrt{\frac{1}{2}-\frac{1}{2}\sqrt{cos^2\frac{a}{2}}}=\sqrt{\frac{1}{2}-\frac{1}{2}cos\frac{a}{2}}\)
\(=\sqrt{\frac{1}{2}-\frac{1}{2}\left(1-2sin^2\frac{a}{4}\right)}=\sqrt{\frac{1}{2}-\frac{1}{2}+sin^2\frac{a}{4}}\)
\(=\sqrt{sin^2\frac{a}{4}}=sin\frac{a}{4}\)
sorry nha minh f ghi thiếu đề nhân thêm với\(\sqrt{\frac{1}{a^2}-1-\frac{1}{a}}\)nữa nha
\(\frac{1}{2}+\frac{1}{2}cosx=\frac{1}{2}\left(1+cosx\right)=\frac{1}{2}\left(1+2cos^2\frac{x}{2}-1\right)=cos^2\frac{x}{2}\)
Do \(0< x< \frac{\pi}{2}\Rightarrow cos\frac{x}{k}>0\) \(\forall k\) nguyên dương
\(\Rightarrow A=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cosx}}}\)
\(A=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{2}}}\)
\(A=\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{4}}\)
\(A=cos\frac{x}{8}\)
\(\Rightarrow\) Với \(n=\pm8\) thì đẳng thức luôn đúng
+) \(P=\frac{\sqrt{x}+\sqrt{x^2-2x+1}+1}{\sqrt{x^2-2x+1}}=\frac{\sqrt{x}+\left|x-1\right|+1}{\left|x-1\right|}\)
+) \(x=a+1-\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}\)
\(=a+1-\sqrt{\left(a+1\right)^2-2a+\frac{a^2}{\left(a+1\right)^2}}\)
\(=a+1-\sqrt{\left(a+1-\frac{a}{a+1}\right)^2}\) vì a > 0 => \(a+1-\frac{a}{a+1}=\frac{a^2+a+1}{a+1}>0\)
\(=a+1-\left(a+1-\frac{a}{a+1}\right)=\frac{a}{a+1}\)
=> \(\left|x-1\right|=\left|\frac{a}{a+1}-1\right|=\left|-\frac{1}{a+1}\right|=\frac{1}{a+1}\)
=> \(P=\frac{\sqrt{\frac{a}{a+1}}+\frac{1}{a+1}+1}{\frac{1}{a+1}}=\sqrt{a\left(a+1\right)}+a+2\)
\(A=\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\)\(\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)
\(=\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\right)\)\(:\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)
\(=\frac{2\left(2\sqrt{x}+1\right)+3\left(\sqrt{x}-2\right)-5\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\)\(:\frac{2\sqrt{x}+3}{5\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\)\(.\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\frac{2\sqrt{x}+3}{2\sqrt{x}+1}.\frac{5\sqrt{x}}{2\sqrt{x}+3}=\frac{5\sqrt{x}}{2\sqrt{x}+1}\)
\(A\in Z\Leftrightarrow\frac{5\sqrt{x}}{2\sqrt{x}+1}\in Z\Leftrightarrow\frac{10\sqrt{x}}{2\sqrt{x}+1}\in Z\)
\(\Rightarrow\frac{10\sqrt{x}+5-5}{2\sqrt{x}+1}\in Z\Leftrightarrow5-\frac{5}{2\sqrt{x}+1}\in Z\)
\(\Rightarrow\frac{5}{2\sqrt{x}+1}\in Z\Rightarrow2\sqrt{x}+1\inƯ_5\)
Mà \(Ư_5=\left\{\pm1;\pm5\right\}\)
Nhưng \(2\sqrt{x}+1\ge1\)
\(\Rightarrow\orbr{\begin{cases}2\sqrt{x}+1=1\\2\sqrt{x}+1=5\end{cases}\Rightarrow\orbr{\begin{cases}2\sqrt{x}=0\\2\sqrt{x}=4\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)
Vậy \(x\in\left\{0;4\right\}\)
a) \(4\sqrt{x}+\frac{2}{\sqrt{x}}< 2x+\frac{1}{2x}+2\)
hay \(2\sqrt{x}+\frac{1}{\sqrt{x}}< x+\frac{1}{4x}+1\)
\(\Leftrightarrow0< x+\frac{1}{4x}+1-2\sqrt{x}-\frac{1}{\sqrt{x}}\)
\(\Leftrightarrow0< \left(\sqrt{x}\right)^2-2\sqrt{x}-2\sqrt{x}\cdot1+1+\frac{1}{\left(2\sqrt{x}\right)^2}-2\cdot\frac{1}{2\sqrt{x}}\)
\(\Leftrightarrow1< \left(\sqrt{x}-1\right)^2+\left(\frac{1}{2\sqrt{x}}-1\right)^2\)
\(\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}>1\\2\sqrt{x}>1\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>\frac{1}{4}\end{cases}\Rightarrow}x>1}\)
b) \(\frac{1}{1-x^2}>\frac{3}{\sqrt{1-x^2}}-1\left(1\right)\left(ĐK:-1< x< 1\right)\)
Ta có (1) <=> \(\frac{1}{1-x^2}-1-\frac{3x}{\sqrt{1-x^2}}+2>0\)\(\Leftrightarrow\frac{x^2}{1-x^2}-\frac{3x}{\sqrt{1-x^2}}+2>0\)
Đặt \(t=\frac{x}{\sqrt{1-x^2}}\)ta được
\(t^2-3t+2>0\Leftrightarrow\orbr{\begin{cases}\frac{x}{\sqrt{1-x^2}}< 1\\\frac{x}{\sqrt{1-x^2}}>2\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{1-x^2}>x\left(a\right)\\2\sqrt{1-x^2}< x\left(b\right)\end{cases}}}\)
(a) <=> \(\hept{\begin{cases}x< 0\\1-x^2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\1-x^2>x^2\end{cases}}}\)
\(\Leftrightarrow-1< x< 0\)hoặc \(\hept{\begin{cases}x\ge0\\x^2< \frac{1}{2}\end{cases}}\)
\(\Leftrightarrow-1< x< 0\)hoặc \(0\le x\le\frac{\sqrt{2}}{2}\Leftrightarrow-1< x< \frac{\sqrt{2}}{2}\)
(b) \(\Leftrightarrow\hept{\begin{cases}1-x^2>0\\x>0\\4\left(1-x^2\right)< x^2\end{cases}\Leftrightarrow\hept{\begin{cases}0< x< 1\\x^2>\frac{4}{5}\end{cases}\Leftrightarrow}\frac{2}{\sqrt{5}}< x< 1}\)
\(\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cosa}}=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{a}{2}-1\right)}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{cos^2\frac{a}{2}}}=\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{a}{2}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{a}{4}-1\right)}=\sqrt{cos^2\frac{a}{4}}\)
\(=cos\frac{a}{4}\)