K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 7 2021

\(A=\dfrac{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{2}.\sqrt{6-2\sqrt{5}}+\sqrt{\left(\sqrt{10}-\sqrt{5}\right)^2}}{2\left(\sqrt{2}+1\right)}\)

\(=\dfrac{\sqrt{5}+1-\sqrt{2}\left(\sqrt{5}-1\right)+\sqrt{10}-\sqrt{5}}{2\left(\sqrt{2}+1\right)}\)

\(=\dfrac{\sqrt{5}+1-\sqrt{10}+\sqrt{2}+\sqrt{10}-\sqrt{5}}{2\left(\sqrt{2}+1\right)}\)

\(=\dfrac{\sqrt{2}+1}{2\left(\sqrt{2}+1\right)}=\dfrac{1}{2}\)

4 tháng 6 2023

\(B=\sqrt{5}\left(\sqrt{20}-\sqrt{8}\right)+2\sqrt{10}\)

\(=\sqrt{100}-\sqrt{40}+2\sqrt{10}\)

\(=\sqrt{10^2}-\sqrt{2^2.10}+2\sqrt{10}\)

\(=10-2\sqrt{10}+2\sqrt{10}\)

\(=10+0\)

\(=10\)

16 tháng 10 2021

a: Ta có: \(A=\sqrt{8}-2\sqrt{18}+3\sqrt{50}\)

\(=2\sqrt{2}-6\sqrt{2}+15\sqrt{2}\)

\(=11\sqrt{2}\)

b: Ta có: \(B=\sqrt{125}-10\sqrt{\dfrac{1}{20}}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)

\(=5\sqrt{5}-\sqrt{5}+\sqrt{5}-1\)

\(=5\sqrt{5}-1\)

29 tháng 5 2018

oooooooooooooooooooooooo

2:

ĐKXĐ: x>=3

 \(\Leftrightarrow\sqrt{x-3+2\cdot\sqrt{x-3}\cdot\sqrt{3}+3}+\sqrt{x-3-2\cdot\sqrt{x-3}\cdot\sqrt{3}+3}=2\sqrt{3}\)

=>\(\left|\sqrt{x-3}+\sqrt{3}\right|+\left|\sqrt{x-3}-\sqrt{3}\right|=2\sqrt{3}\)

\(\Leftrightarrow\sqrt{x-3}+\sqrt{3}+\left|\sqrt{x-3}-\sqrt{3}\right|=2\sqrt{3}\)

\(\Leftrightarrow\sqrt{x-3}+\left|\sqrt{x-3}-\sqrt{3}\right|=\sqrt{3}\)(1)

TH1: x>=6

(1) trở thành \(\sqrt{x-3}+\sqrt{x-3}-\sqrt{3}=\sqrt{3}\)

=>\(2\sqrt{x-3}=2\sqrt{3}\)

=>x-3=3

=>x=6(nhận)

TH2: 3<=x<6

Phương trình (1) sẽ là;

\(\sqrt{x-3}+\sqrt{3}-\sqrt{x-3}=\sqrt{3}\)

=>\(\sqrt{3}=\sqrt{3}\)(luôn đúng)

1:

\(A^2=8+2\sqrt{10+2\sqrt{5}}+8-2\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{8^2-\left(2\sqrt{10+2\sqrt{5}}\right)^2}\)

\(=16+2\cdot\sqrt{64-4\cdot\left(10+2\sqrt{5}\right)}\)

\(=16+2\cdot\sqrt{24-8\sqrt{5}}\)

\(=16+2\cdot\sqrt{20-2\cdot2\sqrt{5}\cdot2+4}\)

\(=16+2\cdot\sqrt{\left(2\sqrt{5}-2\right)^2}\)

\(=16+2\cdot\left(2\sqrt{5}-2\right)=12+4\sqrt{5}\)

\(=10+2\cdot\sqrt{10}\cdot\sqrt{2}+2\)

\(=\left(\sqrt{10}+\sqrt{2}\right)^2\)

=>\(A=\sqrt{10}+\sqrt{2}\)

21 tháng 12 2017

\(C=\sqrt{\left(8+2\sqrt{10+2\sqrt{5}}\right).\left(8-2\sqrt{10+2\sqrt{5}}\right)}=\sqrt{\left(8^2-\left(2\sqrt{10+2\sqrt{5}}\right)^2\right)=\sqrt{64-4\left(10+2\sqrt{5}\right)}}\)

\(C=\sqrt{64-40-8\sqrt{5}}=\sqrt{24-8\sqrt{5}}\)

\(C=\sqrt{20-2.2.2\sqrt{5}+4}=\sqrt{\left(2\sqrt{5}-2\right)^2}\)

\(C=2\sqrt{5}-2=2\left(\sqrt{5}-1\right)\)

7 tháng 7 2019

binh phuong len di ban

14 tháng 7 2019

\(\frac{5}{\sqrt{2}-7}-\frac{4}{3\sqrt{2}+5}-\frac{7}{4-5\sqrt{2}}\)

4 tháng 7 2023

Tử số của phân số đầu phải là \(\sqrt{x}+2\) chứ không phải \(\sqrt{x+2}\), vì cái \(\sqrt{x}+2\) nó mới logic để rút gọn: )

\(Q=\left(\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}^3+8}-\dfrac{x-\sqrt{x}}{\sqrt{x}^3+8}\right)\left(\dfrac{5x-10\sqrt{x}+20}{5\sqrt{x}+4}\right)\\ =\left(\dfrac{x+4\sqrt{x}+4-x+\sqrt{x}}{\sqrt{x}^3+8}\right)\left(\dfrac{5x-10\sqrt{x}+20}{5\sqrt{x}+4}\right)\\ =\dfrac{\left(5\sqrt{x}+4\right).5.\left(x-2\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)\left(5\sqrt{x}+4\right)}\\ =\dfrac{5}{\sqrt{x}+2}\)

4 tháng 7 2023

cảm ơn bạn nha cái tử số kia mình đánh máy nhầm á bucminh