K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(B=10x^2-15xy-xy+5xy=10x^2-11xy\)

\(=10\cdot\dfrac{1}{25}-11\cdot\dfrac{-1}{5}\cdot\dfrac{1}{2}\)

\(=\dfrac{5}{2}+\dfrac{11}{10}=\dfrac{18}{5}\)

2: \(C=x^2y^2-xy^2-2x^3+2x^2y^2\)

\(=-xy^2+3x^2y^2-2x^3\)

\(=-\dfrac{1}{2}\cdot2^2+3\cdot\left(\dfrac{1}{2}\cdot2\right)^2-2\cdot\dfrac{1}{8}\)

\(=-2+3-\dfrac{1}{4}=1-\dfrac{1}{4}=\dfrac{3}{4}\)

1: \(B=10x^2-15xy-xy+5xy=10x^2-11xy\)

\(=10\cdot\dfrac{1}{25}-11\cdot\dfrac{-1}{5}\cdot\dfrac{1}{2}\)

\(=\dfrac{5}{2}+\dfrac{11}{10}=\dfrac{18}{5}\)

2: \(C=x^2y^2-xy^2-2x^3+2x^2y^2\)

\(=-xy^2+3x^2y^2-2x^3\)

\(=-\dfrac{1}{2}\cdot2^2+3\cdot\left(\dfrac{1}{2}\cdot2\right)^2-2\cdot\dfrac{1}{8}\)

\(=-2+3-\dfrac{1}{4}=1-\dfrac{1}{4}=\dfrac{3}{4}\)

1: \(B=10x^2-15xy-xy+5xy=10x^2-11xy\)

\(=10\cdot\dfrac{1}{25}-11\cdot\dfrac{-1}{5}\cdot\dfrac{-1}{2}\)

\(=\dfrac{2}{5}-\dfrac{11}{10}=\dfrac{-7}{10}\)

2: \(C=x^2y^2-xy^3-2x^3+2x^2y^2\)

\(=-xy^3+3x^2y^2-2x^3\)

\(=-\dfrac{-1}{2}\cdot2^3+3\cdot\left(\dfrac{-1}{2}\cdot2\right)^2-2\cdot\left(-\dfrac{1}{2}\right)^3\)

\(=\dfrac{1}{4}\cdot8+3-2\cdot\dfrac{-1}{8}\)

\(=2+3+\dfrac{1}{4}=5+\dfrac{1}{4}=\dfrac{21}{4}\)

10 tháng 8 2019

A = 5x(x - y) - y(5x - y)

A = 5x2 - 5xy - 5xy + y2

A = 5x2 - 10xy + y2 (1)

Thay x = -1; y = 3 vào (1), ta có:

5.(-1)2 - 10.(-1).3 + 32 = 44

B = 4y(x2 - 3xy + 3y2) - 2xy(2x - 6y - 3)

B = 4x2y - 12x2 + 12y3 - 4x2y + 12xy2 + 6xy

B = 12y3 + 6xy (1)

Thay x = 5; y = -1 vào (1), ta có:

12.(-1)3 + 6.5.(-1) = -42

C = 5x2(x - y2) + 3x(xy- y) - 5x3 

C = 5x3 - 5x2y2 + 3x2y2 - 3xy - 5x3 

C = -2x2y2 - 3xy (1)

Thay x = -2; y = -5 vào (1), ta có:

-2.(-2)2.(-5)2 - 3.(-2).(-5) = -230

D = 6x2(y- xy + 2x2y) - 3xy(2xy - x+ 4x3)

D = 6x2y2 - 6x3y + 12x4y - 6x2y2 + 3x3y - 12x4y

D = -3x3y (1)

Thay x = 11; y = -1 vào (1), ta có:

-3.113.(-1) = 3993

12 tháng 4 2022

a.\(x=0;y=-1\)

\(\Rightarrow2.0-\dfrac{-1\left(0^2-2\right)}{0.-1-1}=0-\dfrac{2}{-1}=2\)

b.\(x=2\)

\(\Rightarrow4.2^2-3\left|2\right|-2=16-6-2=8\)

\(x=-3\)

\(\Rightarrow4.\left(-3\right)^2-3\left|-3\right|-2=36-9-2=25\)

c.\(x=-\dfrac{1}{5};y=-\dfrac{3}{7}\)

\(\Rightarrow5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6=5.\dfrac{1}{25}+3+6=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)

12 tháng 4 2022

thay x=2 và biểu thức A ta đc

\(A=4.2^2-3.\left|2\right|-2=4.4-6-2=16-6-2=8\)

thay x=-3  biểu thức A ta đc

\(A=4.\left(-3\right)^2-3.\left|-3\right|-2=4.9-9-2=36-9-2=25\)

 

thay x=-1/5 ; y=-3/7  biểu thức B ta đc

\(B=5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6\)

\(B=5\cdot\dfrac{1}{25}+3+6\)

\(B=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)

 

AH
Akai Haruma
Giáo viên
29 tháng 12 2022

Lời giải:

 $\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:

$x=2k; y=3k$

Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.

$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$

a: \(A=x^3y^2\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+xy\left(2-1\right)+y-1=xy+y-1\)

Bậc là 2

b: Thay x=0,1 và y=-2 vào A, ta được:

\(A=-2\cdot0.1+\left(-2\right)-1=-0.2-1-2=-3.2\)

27 tháng 2 2022

\(a,A=2xy+\dfrac{1}{2}x^3y^2-xy-\dfrac{1}{2}x^3y^2+y-1\\ =\left(2xy-xy\right)+\left(\dfrac{1}{2}x^3y^2-1\dfrac{1}{2}x^3y^2\right)+y-1\\ =xy+y-1\)

Bậc: 2

b, Thay x=0,1 và y=-2 vào A ta có:

\(A=xy+y-1=0,1.\left(-2\right)+\left(-2\right)-1=-0,2-2-1=-3,2\)

20 tháng 2 2019

\(A=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)\)

\(\Rightarrow A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)\)

\(\Rightarrow A=0\) ( do x+y = 0 )

20 tháng 3 2022

\(B=\dfrac{3}{4}xy^2-\dfrac{1}{3}x^2y-\dfrac{5}{6}xy^2+2x^2y=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y\)

Bậc:3

Thay x=-1, y=1 vào B ta có:

\(B=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y=-\dfrac{1}{12}.\left(-1\right).1^2+\dfrac{5}{3}.\left(-1\right)^2.1=\dfrac{1}{12}+\dfrac{5}{3}=\dfrac{7}{4}\)