Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{\frac{2000}{11}+\frac{2000}{12}+...+\frac{2000}{100}}{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}}\)
\(\Rightarrow A=\frac{2000.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)}{\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)+...+\left(1+\frac{98}{2}\right)+1}\)
\(\Rightarrow A=\frac{2000.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)}{\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}}\)
\(\Rightarrow A=\frac{2000.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)}{100.\left(\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}+\frac{1}{100}\right)}\)
\(\Rightarrow A=\frac{20.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)}{\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}+\frac{1}{100}}\)
\(\Rightarrow A=\frac{\frac{20}{11}+\frac{20}{12}+..+\frac{20}{100}}{\frac{1}{99}+\frac{1}{98}+..+\frac{1}{2}+\frac{1}{100}}\)
Đặt \(A=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{899}{30^2}\)
\(\Rightarrow A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{29.31}{30.30}\)
\(\Rightarrow A=\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}\)
\(\Rightarrow A=\frac{\left(1.2.3...29\right).\left(3.4.5...31\right)}{\left(2.3.4...30\right).\left(2.3.4...30\right)}\)
\(\Rightarrow A=\frac{1}{30}.\frac{31}{2}=\frac{31}{60}\)
Vậy \(A=\frac{31}{60}\)
317.8111/2710.915
=317.(34)11/(33)10.(32)15
=317.344/330.330
=361/360
=3
Đề sai rồi bạn, vì biểu thức trong căn ở mẫu nhỏ hơn 0 rồi
\(=\frac{2^{15}\cdot\left(3^2\right)^4}{2^7\cdot3^7\cdot\left(2^3\right)^3}\)
\(=\frac{2^{15}\cdot3^8}{2^7\cdot3^7\cdot2^9}\)
\(=\frac{2^{15}\cdot3^8}{2^{16}\cdot3^7}\)
\(=\frac{3}{2}\)
Bài làm :
\(\frac{2^{15}.9^4}{6^7.8^3}\)
\(=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^7.(2^3)^3}\)
\(=\frac{2^{15}.3^8}{2^7.3^7.2^9}\)
\(=\frac{3}{2}\)
Học tốt nhé
Bài làm :
Ta có :
\(\frac{2^{15}.9^4}{6^7.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^7.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^7.3^72^9}=\frac{3}{2}\)
Bài làm :
\(\frac{2^{15}.9^4}{6^7.8^3}\)
\(=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^7.\left(2^3\right)^3}\)
\(=\frac{2^{15}.3^8}{2^7.3^7.2^9}\)
\(=\frac{3}{2}\)
Học tốt nhé
\(C=\dfrac{12-\sqrt{15\cdot9\cdot15}+31}{\dfrac{4}{3}-\dfrac{10}{3}}=\dfrac{12-3\cdot15+31}{-2}=\dfrac{-2}{-2}=1\)
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\frac{2^{19}.\left(3^3\right)^3+15.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(=\frac{2^{19}.3^9+15.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}\)
\(=\frac{2^{19}.3^9+15.2^{18}.3^8}{2^{19}.3^9+2^{20}.3^{10}}\)
\(=\frac{2^{18}.3^8\left(2.3+15\right)}{2^{19}.3^9\left(1+2.3\right)}\)
\(=\frac{6+15}{2.3\left(1+6\right)}\)
\(=\frac{21}{6.7}\)
\(=\frac{21}{42}\)
\(=\frac{1}{2}\)
Rút gọn :
\(\frac{9}{30}=\frac{9:3}{30:3}=\frac{3}{10}\)
\(\frac{98}{80}=\frac{98:2}{80:2}=\frac{49}{40}\)
\(\frac{15}{1000}=\frac{15:5}{1000:5}=\frac{3}{200}\)
Quy đồng :
\(\frac{3}{10}=\frac{3.20}{10.20}\frac{60}{200}\)
\(\frac{49}{40}=\frac{49.5}{40.5}=\frac{245}{200}\)
\(\frac{3}{200}=\frac{3}{200}\)
\(\frac{9}{30}=\frac{3}{10};\frac{98}{80}=\frac{49}{40};\frac{15}{1000}=\frac{3}{200}\)
MSC của \(\frac{3}{10};\frac{49}{40};\frac{3}{200}\)là :200
Có : \(\frac{3}{10}=\frac{60}{200}\)
\(\frac{49}{40}=\frac{245}{200}\)
\(\frac{3}{200}=\frac{3}{200}\)