K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

Ta thấy: \(\frac{\left(a-b\right)\left(c-d\right)}{\left(b^2-a^2\right)\left(d^2-c^2\right)}=\frac{\left(b-a\right)\left(d-c\right)}{\left(b-a\right)\left(b+a\right)\left(d-c\right)\left(d+c\right)}=\frac{1}{\left(a+b\right)\left(c+d\right)}\)

\(\frac{\left(a-b\right)\left(c-d\right)}{\left(b^2-a^2\right)\left(d^2-c^2\right)}\)

\(=\frac{\left(a-b\right)\left(c-d\right)}{\left(b-a\right)\left(b+a\right)\left(d-c\right)\left(d+c\right)}\)

\(\frac{1}{\left(a+b\right)\left(c+d\right)}\)

2 tháng 12 2018

\(\frac{\left(a-b\right)\left(c-d\right)}{\left(b^2-a^2\right)\left(d^2-c^2\right)}=\frac{\left(b-a\right)\left(d-c\right)}{\left(b-a\right)\left(b+a\right)\left(d-c\right)\left(d+c\right)}=\frac{1}{\left(a+b\right)\left(c+d\right)}\)

\(\frac{m^4-m}{2m^2+2m+2}=\frac{m\left(m^3-1\right)}{2m^2+2m+2}=\frac{m\left(m-1\right)\left(m^2+m+1\right)}{2\left(m^2+m+1\right)}=\frac{m\left(m-1\right)}{2}\)

15 tháng 11 2016

Phân tích mẫu thức thành nhân tử :

\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)+b^2c-ab^2+ac^2-bc^2\)

\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)\)

\(=\left(b-c\right)\left(a^2+bc-ab-ac\right)\)

\(=\left(b-c\right)\left[a\left(a-b\right)-c\left(a-b\right)\right]=\left(b-c\right)\left(a-c\right)\left(a-b\right).\)

Do đó : \(A=\frac{\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3}{-\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Nhận xét : Nếu \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz.\)

Đặt \(b-c=x,c-a=y,a-b=z\) thì \(x+y+z=0\)

Theo nhận xét trên : \(A=\frac{x^3+y^3+z^3}{-xyz}=\frac{3xyz}{-xyz}=-3.\)

15 tháng 11 2016

Tử:

(b - c)3 + (c - a)3 + (a - b)3

= (b - c + c - a + a - b)3 - 3(b - c + c - a)(b - c + a - b)(c - a + a - b)

= 0 - 3(b - a)(a - c)(c - b)

= 3(a - b)(a - c)(c - b)

Mẫu:

a2(b - c) + b2(c - a) + c2(a - b)

= a2(b - c) + b2c - ab2 + ac2 - bc2

= a2(b - c) - a(b2 - c2) + bc(b - c)

= a2(b - c) - a(b - c)(b + c) + bc(b - c)

= (b - c)(a2 - ab - ac + bc)

= (b - c)[a(a - b) - c(a - b)]

= (b - c)(a - b)(a - c)

\(A=\frac{3\left(a-b\right)\left(a-c\right)\left(c-b\right)}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}\)

\(=\frac{3\left(c-b\right)}{b-c}\)

3 tháng 11 2018

em ms hok lớp 1

3 tháng 11 2018

Phân tích mẫu \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)+b^2c-ab^2+c^2a-c^2b\)

\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)\)

\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b+c\right)\left(b-c\right)\)

\(=\left(b-c\right)\left(a^2+bc-ab-ac\right)=\left(b-c\right)\left[a\left(a-c\right)-b\left(a-c\right)\right]\)

\(=\left(b-c\right)\left(a-b\right)\left(a-c\right)=-\left(b-c\right)\left(a-b\right)\left(c-a\right)\)

Đặt b - c = x, c - a = y, a - b = z

=> x + y + z = b - c + c - a + a - b = 0

Từ x+y+z=0 => x3+y3+z3=3xyz (tự c/m)

=>\(A=\frac{x^3+y^3+z^3}{-xyz}=\frac{3xyz}{-xyz}=-3\)

26 tháng 11 2016

 đâu khó đâu cái này lớp 6 chứ 8 cái gì

26 tháng 11 2016

Nếu không khó thì giải giùm đi

23 tháng 12 2018

\(-\frac{a-c}{a+c}\)

18 tháng 7 2019

\(\left(a+b+c+d\right)^2+\left(a+b-c-d\right)^2+\left(a-b+c-d\right)^2+\left(a-b-c+d\right)^2\)(Sửa lại nha bn viết sai để)

Đặt x=a+b , y=c+d , z=a-b , t=c-d

Khi đó biểu thức bằng

\(\left(x+y\right)^2+\left(x-y\right)^2+\left(z+t\right)^2+\left(z-t\right)^2\)

\(=x^2+y^2+2xy+x^2+y^2-2xy+z^2+t^2+2zt+z^2+t^2-2zt\)

\(=2\left(x^2+y^2+z^2+t^2\right)=2\left[\left(a+b\right)^2+\left(a-b\right)^2+\left(c+d\right)^2+\left(c-d\right)^2\right]\)

\(=2(a^2+b^2-2ab+a^2+b^2-2ab+c^2+d^2+2cd+c^2+d^2-2cd)\)

\(=2\left(2a^2+2b^2+2c^2+2d^2\right)=4\left(a^2+b^2+c^2+d^2\right)\)