K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2019

Ta có: 

Bài tập tổng hợp chương 2 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 2 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 2 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

14 tháng 10 2019

Ta có: 

Bài tập: Rút gọn phân thức | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Rút gọn phân thức | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Rút gọn phân thức | Lý thuyết và Bài tập Toán 8 có đáp án

13 tháng 8 2018

Hướng dẫn giải:

Cách rút gọn phân thức cực hay, có đáp án | Toán lớp 8

13 tháng 6 2017

Ta có

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vế trái bằng vế phải nên đẳng thức được chứng minh.

22 tháng 11 2021

\(1,\\ 12x^6y^3:4x^3y=3x^3y^2\\ \left(x+1\right)\left(x^2-x+1\right)=x^3+1\\ 2x^2y\left(x^2+3xy\right)=3x^4y+6x^3y^2\\ 2,\\ a,=2xy\left(2x+3y-4\right)\\ b,=\left(x-3\right)\left(x+y\right)\\ c,=\left(x-2\right)\left(x+2\right)+y\left(x-2\right)=\left(x+y+2\right)\left(x-2\right)\\ d,=x^2-2x-5x+10=\left(x-2\right)\left(x-5\right)\\ 3,\\ a,\Leftrightarrow x^2-x^2+2x=2\\ \Leftrightarrow2x=2\Leftrightarrow x=1\\ b,\Leftrightarrow\left(x-2\right)\left(x-2+1\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

12 tháng 4 2019

18 tháng 11 2018

26 tháng 11 2021

\(a,=\dfrac{\left(x+1\right)\left(x+y\right)}{\left(x-y\right)\left(x+1\right)}=\dfrac{x+y}{x-y}\\ b,=\dfrac{\left(x-3\right)^2}{3x\left(x-3\right)}=\dfrac{x-3}{3x}\\ c,=\dfrac{\left(y-x\right)\left(y+x\right)}{xy\left(x-y\right)}=\dfrac{-x-y}{xy}\)

AH
Akai Haruma
Giáo viên
26 tháng 11 2021

Lời giải:

a.

\(\frac{x^2+xy+x+y}{x^2-xy+x-y}=\frac{x(x+y)+(x+y)}{x(x+1)-y(x+1)}=\frac{(x+y)(x+1)}{(x+1)(x-y)}=\frac{x+y}{x-y}\)

b.

\(\frac{x^2-6x+9}{3x^2-9x}=\frac{(x-3)^2}{3x(x-3)}=\frac{x-3}{3x}\)

c.

\(\frac{y^2-x^2}{x^2y-xy^2}=\frac{(y-x)(y+x)}{-xy(y-x)}=\frac{x+y}{-xy}\)

11 tháng 12 2021

\(a,=x\left(x-2\right)\\ b,=2b\left(x-3y\right)+a\left(x-3y\right)=\left(a+2b\right)\left(x-3y\right)\\ c,=x\left(x^2+2xy+y^2-4\right)=x\left[\left(x+y\right)^2-4\right]=x\left(x+y+2\right)\left(x+y-2\right)\\ d,=4-\left(x+y\right)^2=\left(2-x-y\right)\left(2+x+y\right)\\ đ,=5\left(x-y\right)\left(x+y\right)+3\left(x+y\right)^2=\left(x+y\right)\left(5x-5y+3x+3y\right)\\ =\left(x+y\right)\left(8x-2y\right)=2\left(4x-y\right)\left(x+y\right)\\ e,=3x\left(2xy-3\right)\\ b,=x\left(4x^2-4xy+y^2-4\right)=x\left[\left(2x-y\right)^2-4\right]=x\left(2x-y-2\right)\left(2x-y+2\right)\\ f,=\left(x+y\right)^2-z^2=\left(x+y-z\right)\left(x+y+z\right)\)

26 tháng 10 2021

a: \(=x^2\left(2x+3\right)+\left(2x+3\right)\)

\(=\left(2x+3\right)\left(x^2+1\right)\)

b: \(=\left(x-4\right)\left(x+3\right)\)

e: =(x+3)(x-2)

26 tháng 10 2021

a) \(=x^2\left(2x+3\right)+\left(2x+3\right)=\left(2x+3\right)\left(x^2+1\right)\)

b) \(=x\left(x-4\right)+3\left(x-4\right)=\left(x-4\right)\left(x+3\right)\)

c) \(=\left(2x\right)^2-\left(x^2+1\right)^2=\left(x^2-2x+1\right)\left(x^2+2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\)

d) \(=4xy\left(y-3x+2\right)\)

e) \(=x\left(x-2\right)+3\left(x-2\right)=\left(x-2\right)\left(x+3\right)\)

f) \(=x\left(x^2+2xy+y^2-4z^2\right)=x\left[\left(x+y\right)^2-4z^2\right]=x\left(x+y-2z\right)\left(x+y+2z\right)\)

g) \(=x\left(x^2-2xy+y^2-25\right)=x\left[\left(x-y\right)^2-25\right]=x\left(x-y-5\right)\left(x-y+5\right)\)

h) \(=x\left(x+1\right)-3\left(x+1\right)=\left(x+1\right)\left(x-3\right)\)

i) \(=x^2\left(x-3\right)-9\left(x-3\right)=\left(x-3\right)\left(x^2-9\right)=\left(x-3\right)^2\left(x+3\right)\)