\(\dfrac{1-x^2}{x\left(x-1\right)}\)với x\(\ne\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2024

Với x ≠ 0; x ≠ 1, ta có:

(1 - x²)/[x(x - 1)]

= -(x - 1)(x + 1)/[x(x - 1)]

= -(x + 1)/x

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

a)

\(\frac{x^2-16}{4x-x^2}=\frac{x^2-4^2}{x(4-x)}=\frac{(x-4)(x+4)}{x(4-x)}=\frac{x+4}{-x}\)

b) \(\frac{x^2+4x+3}{2x+6}=\frac{x^2+x+3x+3}{2(x+3)}=\frac{x(x+1)+3(x+1)}{2(x+3)}=\frac{(x+1)(x+3)}{2(x+3)}=\frac{x+1}{2}\)

c)

\(\frac{15x(x+y)^3}{5y(x+y)^2}=\frac{5.3.x(x+y)^2.(x+y)}{5y(x+y)^2}=\frac{3x(x+y)}{y}\)

d) \(\frac{5(x-y)-3(y-x)}{10(x-y)}=\frac{5(x-y)+3(x-y)}{10(x-y)}=\frac{8(x-y)}{10(x-y)}=\frac{8}{10}=\frac{4}{5}\)

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

e) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7(x+y)}{-3(x+y)}=\frac{-7}{3}\)

f) \(\frac{x^2-xy}{3xy-3y^2}=\frac{x(x-y)}{3y(x-y)}=\frac{x}{3y}\)

g) \(\frac{2ax^2-4ax+2a}{5b-5bx^2}=\frac{2a(x^2-2x+1)}{5b(1-x^2)}=\frac{2a(x-1)^2}{5b(1-x)(1+x)}\)

\(=\frac{2a(x-1)}{5b(-1)(x+1)}=\frac{2a(1-x)}{5b(x+1)}\)

9 tháng 12 2018

\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)

\(A=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3-3x}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{x^3-x^2+x-3-3x+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{1}{x^3+1}\)

28 tháng 12 2016

ĐKXĐ: \(x\ne\pm2\)

a)\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+4}{x^2-4}=\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+4}{x^2-4}\)

\(=\frac{x+2}{x^2-4}+\frac{x-2}{x^2-4}+\frac{x^2+4}{x^2-4}=\frac{x+2+x-2+x^2+4}{x^2-4}=\frac{x^2+2x+4}{x^2-4}=\frac{\left(x+1\right)^2+3}{x^2-4}\)

b)  \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+3\ge3>0\) 

=> A<0 khi \(x^2-4< 0\Leftrightarrow x^2< 4\)

Vì \(x^2\ge0\Rightarrow0\le x^2< 4\Leftrightarrow-2< x< 2\)

Tại sao lại x khác -1 thì A<0 vì khi x=-1 thì A=-1<0 mà!

a: \(=\dfrac{x^3-x^2+x+3\left(x^2-1\right)+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x^3-x^2+2x+4+3x^2-3}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^3+2x^2+2x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x^2+x+1}{x^2-x+1}\)

b: \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

\(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

=>A>0 với mọi x<>-1

Bài làm

a) \(P=\left(\frac{x}{x-2}+\frac{1}{x^2-4}\right):\frac{x+1}{x+2}\)

\(P=\left(\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}\)

\(P=\left(\frac{x^2+2x}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}\)

\(P=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}:\frac{x+1}{x+2}\)

\(P=\frac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{x+1}\)

\(P=\frac{x+1}{x-2}\)

b) Thay \(x=\frac{1}{2}\)vào P ta được:

\(P=\frac{\frac{1}{2}+1}{\frac{1}{2}-2}\)

\(P=\frac{\frac{1}{2}+\frac{2}{2}}{\frac{1}{2}-\frac{2}{2}}\)

\(P=\frac{3}{2}:\frac{-1}{2}\)

\(P=\frac{3}{2}.\left(-2\right)\)

\(P=-3\)

Vậy giá trị của \(P=-3\) tại \(x=\frac{1}{2}\)

5 tháng 5 2020

a) \(P=\left(\frac{x}{x-2}+\frac{1}{x^2-4}\right):\frac{x+1}{x+2}\left(x\ne-1;x\ne\pm2\right)\)

\(\Leftrightarrow P=\left(\frac{x}{x-2}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}\)

\(\Leftrightarrow P=\left(\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}\)

\(\Leftrightarrow P=\left(\frac{x^2+2x}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}\)

\(\Leftrightarrow P=\frac{x^2+2x+1}{\left(x+2\right)\left(x-2\right)}\cdot\frac{x+2}{x+1}\)

\(\Leftrightarrow P=\frac{\left(x+1\right)^2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(x+1\right)}=\frac{x+1}{x-2}\)

Vậy \(P=\frac{x+1}{x-2}\left(x\ne-1;x\ne\pm2\right)\)

b) Ta có \(P=\frac{x+1}{x-2}\left(x\ne-1;x\ne\pm2\right)\)

Thay x=\(\frac{1}{2}\left(tm\right)\)vào P ta có:

\(P=\frac{\frac{1}{2}+1}{\frac{1}{2}-2}=\frac{\frac{1}{2}+\frac{2}{2}}{\frac{1}{2}-\frac{4}{2}}=\frac{\frac{3}{2}}{\frac{-3}{2}}=\frac{3}{2}:\frac{-3}{2}=-1\)

Vậy \(P=-1\)khi x=\(\frac{1}{2}\)

6 tháng 5 2018

a. \(A=\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}\right):\dfrac{x}{x^2-1}\)

\(A=\left(\dfrac{x+1-x+1}{\left(x+1\right)\left(x-1\right)}\right).\dfrac{\left(x-1\right)\left(x+1\right)}{x}\)

\(A=\dfrac{2}{\left(x+1\right)\left(x-1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{x}\)

\(A=\dfrac{2}{x}\)

b.

Ta có:

\(A=\dfrac{2}{x}=\dfrac{1}{2}\Rightarrow x=4\)

c.

\(A=\dfrac{2}{x}< 0\Rightarrow x< 0\)

11 tháng 12 2020

a) \(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right):\frac{x+1}{x-2}\)(với \(x\ne\pm2;x\ne-1\))

\(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{-\left(6-5x\right)}{x^2-4}\right):\frac{x+1}{x-2}\)

\(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{5x-6}{\left(x+2\right)\left(x-2\right)}\right):\frac{x+1}{x-2}\)

\(M=\left(\frac{4\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{5x-6}{\left(x+2\right)\left(x-2\right)}\right):\frac{x+1}{x-2}\)

\(M=\frac{4\left(x-2\right)+2\left(x+2\right)-5x+6}{\left(x+2\right)\left(x-2\right)}:\frac{x+1}{x-2}\)

\(M=\frac{4x-8+2x+4-5x+6}{\left(x+2\right)\left(x-2\right)}:\frac{x+1}{x-2}\)

\(M=\frac{x+2}{\left(x+2\right)\left(x-2\right)}:\frac{x+1}{x-2}\)

\(M=\frac{1}{x-2}:\frac{x+1}{x-2}=\frac{1}{x-2}\cdot\frac{x-2}{x+1}=\frac{1}{x+1}\)

b) Với \(M=\frac{1}{4}\)ta có :

\(M=\frac{1}{x+1}\Rightarrow\frac{1}{4}=\frac{1}{x+1}\)

\(\Rightarrow1\left(x+1\right)=4\Rightarrow x+1=4\Rightarrow x=3\)

Vậy x = 3

11 tháng 12 2020

a, \(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right):\frac{x+1}{x-2}\)

\(=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{\left(2-x\right)\left(x+2\right)}\right):\frac{x+1}{x-2}\)

\(=\left(\frac{4\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{6-5x}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x-2}\)

\(=\frac{4x-8+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}:\frac{x+1}{x-2}\)

\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}:\frac{x+1}{x-2}=\frac{1}{x-2}.\frac{x-2}{x+1}=\frac{1}{x+1}\)

b, Ta có : M = 1/4 hay \(\frac{1}{x+1}=\frac{1}{4}\Leftrightarrow4=x+1\Leftrightarrow x=3\)

24 tháng 12 2017

Hỏi đáp ToánHỏi đáp Toán

10 tháng 1 2021

cái này nó hơi khó 1 tí nên chú ý chút khác lên lever :>

a, \(A=\left(\frac{4x}{x^2+2x}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right):\frac{x+1}{x-2}\)ĐK : x khác 0 ; 2 ; -2

\(=\left(\frac{4x}{x\left(x+2\right)}+\frac{2}{x-2}-\frac{6-5x}{\left(2-x\right)\left(x+2\right)}\right):\frac{x+1}{x-2}\)

\(=\left(\frac{4x\left(x-2\right)}{MTC}+\frac{2x\left(x+2\right)}{MTC}+\frac{\left(6-5x\right)x}{MTC}\right):\frac{x+1}{x-2}\)

\(=\left(\frac{4x^2-8x+2x^2+4x+6x-5x^2}{MTC}\right):\frac{x+1}{x-2}\)

\(=\frac{x^2+2x}{x\left(x+2\right)\left(x-2\right)}.\frac{x-2}{x+1}=\frac{1}{x+1}\)

b, Ta có : \(x^2-2x=8\Leftrightarrow x^2-2x-8=0\)

\(\left(x-4\right)\left(x+2\right)=0\)<=> \(x=4;-2\)

TH1 : Thay x = 4 ta được : \(\frac{1}{4+1}=\frac{1}{5}\)

TH2 : Thay x = -2 ta được : ( ktmđkxđ ) 

10 tháng 1 2021

\(A=\left(\frac{4x}{x^2+2x}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right)\div\frac{x+1}{x-2}\)

a)\(=\left(\frac{4x}{x\left(x+2\right)}+\frac{2}{x-2}+\frac{6-5x}{x^2-4}\right)\times\frac{x-2}{x+1}\)

\(=\left(\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{6-5x}{\left(x-2\right)\left(x+2\right)}\right)\times\frac{x-2}{x+1}\)

\(=\left(\frac{4x-8+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}\right)\times\frac{x-2}{x+1}\)

\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}\times\frac{x-2}{x+1}\)

\(=\frac{1}{x+1}\)

b) x2 - 2x = 8

<=> x2 - 2x - 8 = 0

<=> x2 - 4x + 2x - 8 = 0

<=> x( x - 4 ) + 2( x - 4 ) = 0

<=> ( x - 4 )( x + 2 ) = 0

<=> x = 4 ( tm ) hoặc x = -2 ( ktm )

Với x = 4 ( tm ) => A = 1/5

Với x = -2 ( ktm ) => A không xác định